Homogenization of a 2D Tidal Dynamics Equation

被引:1
|
作者
Cardone, Giuseppe [1 ]
Fouetio, Aurelien [2 ]
Woukeng, Jean Louis [3 ]
机构
[1] Univ Sannio, Dept Engn, Corso Garibaldi 107, I-84100 Benevento, Italy
[2] Univ Ngaoundere, Higher Teacher Training Coll, Dept Math, POB 652, Bertoua, Cameroon
[3] Univ Dschang, Dept Math & Comp Sci, POB 67, Dschang, Cameroon
关键词
homogenization; tiidal equation; sigma convergence; ALGEBRAS;
D O I
10.3390/math8122209
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This work deals with the homogenization of two dimensions' tidal equations. We study the asymptotic behavior of the sequence of the solutions using the sigma-convergence method. We establish the convergence of the sequence of solutions towards the solution of an equivalent problem of the same type.
引用
下载
收藏
页码:1 / 14
页数:14
相关论文
共 50 条
  • [31] Dynamics of flowing 2D skyrmions
    Coelho, Rodrigo C., V
    Tasinkevych, Mykola
    Telo da Gama, Margarida M.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2022, 34 (03)
  • [32] Exciton dynamics in 2D materials
    Tisdale, William
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 256
  • [33] Global stability in the 2D Ricker equation
    Ryals, Brian
    Sacker, Robert J.
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2015, 21 (11) : 1068 - 1081
  • [34] 2D solitary waves of Boussinesq equation
    Choudhury, J
    Christov, CI
    ISIS International Symposium on Interdisciplinary Science, 2005, 755 : 85 - 90
  • [35] Lump solutions of the 2D Toda equation
    Sun, Yong-Li
    Ma, Wen-Xiu
    Yu, Jian-Ping
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2020, 43 (10) : 6276 - 6282
  • [36] Dispersive estimates for the 2D wave equation
    Kopylova, E. A.
    RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS, 2010, 17 (02) : 226 - 239
  • [37] Numerical Simulation of 2D Model of Diffuser for Tidal Turbines
    Mehmood, Nasir
    Liang, Zhang
    Khan, Jawad
    ADVANCES IN ENGINEERING DESIGN AND OPTIMIZATION III, PTS 1 AND 2, 2012, 201-202 : 234 - 237
  • [38] 2D Homogeneous Solutions to the Euler Equation
    Luo, Xue
    Shvydkoy, Roman
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2015, 40 (09) : 1666 - 1687
  • [39] Dispersion estimates for 2D Dirac equation
    Kopylova, E. A.
    ASYMPTOTIC ANALYSIS, 2013, 84 (1-2) : 35 - 46
  • [40] ADI Schemes for 2D Subdiffusion Equation
    Zivanovic, Sandra
    Jovanovic, Bosko S.
    NUMERICAL ANALYSIS AND ITS APPLICATIONS (NAA 2016), 2017, 10187 : 350 - 358