Adaptive synchronization and anti-synchronization of fractional order chaotic optical systems with uncertain parameters

被引:8
|
作者
Ababneh, O. [1 ]
机构
[1] Zarqa Univ, Sch Math, Zarqa, Jordan
来源
关键词
Optics; synchronization; anti-synchronization; Lyapunov stability theory; fractional order; HYPERCHAOTIC SYSTEMS;
D O I
10.22436/jmcs.023.04.03
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper proposes an adaptive control algorithm to study the synchronization and anti-synchronization of fractional order chaotic optical systems. The Lyapunov stability theory verifies the convergence behavior and guarantees the robust asymptotic stability of the equilibrium point at the origin. In the sense of Lyapunov function, this paper also provides parameters adaptation laws that confirm the convergence of uncertain parameters to some constant values. The computer simulation results endorse the theoretical findings. The results of this study could be beneficial in the area of optics chaotic systems.
引用
收藏
页码:302 / 314
页数:13
相关论文
共 50 条
  • [41] Coexistence of synchronization and anti-synchronization in the unified chaotic systems
    Liu, Lixia
    Ren, Ling
    Bei, Xiaomeng
    Guo, Rongwei
    Yan, Zhiguo
    Ping Zhao
    [J]. 2015 34TH CHINESE CONTROL CONFERENCE (CCC), 2015, : 8590 - 8594
  • [42] Linear feedback synchronization and anti-synchronization of a class of fractional-order chaotic systems based on triangular structure
    Chenchen Peng
    Weihai Zhang
    [J]. The European Physical Journal Plus, 134
  • [43] Robust Synchronization of Uncertain Fractional Order Chaotic Systems
    Luo, Junhai
    Liu, Heng
    Yang, Jiangfeng
    [J]. IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2015, E98A (10): : 2109 - 2116
  • [44] Linear feedback synchronization and anti-synchronization of a class of fractional-order chaotic systems based on triangular structure
    Peng, Chenchen
    Zhang, Weihai
    [J]. EUROPEAN PHYSICAL JOURNAL PLUS, 2019, 134 (06):
  • [45] Study of Generalized Synchronization and Anti-synchronization Between Different Dimensional Fractional-Order Chaotic Systems with Uncertainties
    Shukla, Vijay K.
    Joshi, Mahesh C.
    Rajchakit, Grienggrai
    Chakrabarti, Prasun
    Jirawattanapanit, Anuwat
    Mishra, Prashant K.
    [J]. DIFFERENTIAL EQUATIONS AND DYNAMICAL SYSTEMS, 2023,
  • [46] H∞ synchronization of uncertain fractional order chaotic systems: Adaptive fuzzy approach
    Lin, Tsung-Chih
    Kuo, Chia-Hao
    [J]. ISA TRANSACTIONS, 2011, 50 (04) : 548 - 556
  • [47] Anti-synchronization in different chaotic systems
    Li, Guo-Hui
    Zhou, Shi-Ping
    [J]. CHAOS SOLITONS & FRACTALS, 2007, 32 (02) : 516 - 520
  • [48] Modified projective synchronization of stochastic fractional order chaotic systems with uncertain parameters
    Shao-Juan Ma
    Qiong Shen
    Jing Hou
    [J]. Nonlinear Dynamics, 2013, 73 : 93 - 100
  • [49] Modified projective synchronization of stochastic fractional order chaotic systems with uncertain parameters
    Ma, Shao-Juan
    Shen, Qiong
    Hou, Jing
    [J]. NONLINEAR DYNAMICS, 2013, 73 (1-2) : 93 - 100
  • [50] Control of finite-time anti-synchronization for variable-order fractional chaotic systems with unknown parameters
    Li Zhang
    Chenglong Yu
    Tao Liu
    [J]. Nonlinear Dynamics, 2016, 86 : 1967 - 1980