Nanofluidic transport inside carbon nanotubes

被引:5
|
作者
Kheirabadi, A. Moghimi [1 ]
Moosavi, A. [1 ]
Akbarzadeh, A. M. [1 ]
机构
[1] Sharif Univ Technol, Dept Mech Engn, Tehran, Iran
关键词
nanofluidic; molecular dynamics; carbon nanotube; WATER TRANSPORT; FLUID; FLOW; INFILTRATION; PRESSURE; CHANNEL;
D O I
10.1088/0022-3727/47/6/065304
中图分类号
O59 [应用物理学];
学科分类号
摘要
Using non-equilibrium molecular dynamics simulations, we investigate the effects of nanotube size, mean flow velocity, ion concentration and temperature of an electrolyte water solution on shearing stress and nominal viscosity. It is shown that the distributed electric field arising from the electrolyte water solution has significant influences on fluid properties. Also, the temperature of the solution, which causes thermal movement, affects nanofluidic transport in nanoenvironments. The nominal viscosity and shearing stress increases as the tube diameter increases. When the temperature of solution increases or ion concentration decreases, the shearing stress and nominal viscosity increase. Simultaneous effects of ion concentration and temperature depict that the temperature effect is more dominant and these two parameters cannot be superposed. The molecular mechanisms that affect such behaviours are considered by studying radial density and radial velocity profiles in different cases.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Carbon nanotubes - Structure and transport in nanotubes
    De Heer, WA
    NATURE MATERIALS, 2002, 1 (03) : 153 - 154
  • [22] Orientation of Corannulenes inside Carbon Nanotubes
    Thamwattana, Ngamta
    Karton, Amir
    Sripaturad, Panyada
    Stevens, Kyle
    Baowan, Duangkamon
    ADVANCED THEORY AND SIMULATIONS, 2024, 7 (02)
  • [23] Carbon nanocapsules: blocking materials inside carbon nanotubes
    Tobias, Gerard
    Ballesteros, Belen
    Green, Malcolm L. H.
    PHYSICA STATUS SOLIDI C: CURRENT TOPICS IN SOLID STATE PHYSICS, VOL 7, NO 11-12, 2010, 7 (11-12): : 2739 - 2742
  • [24] Carbon Nanotubes-Based Nanofluidic Devices: Fabrication, Property and Application
    Zhou, Haoyang
    Li, Weiqi
    Yu, Ping
    CHEMISTRYOPEN, 2022, 11 (11)
  • [25] Ionic Conductance of Carbon Nanotubes: Confronting Literature Data with Nanofluidic Theory
    Manghi, Manoel
    Palmeri, John
    Henn, Francois
    Noury, Adrien
    Picaud, Fabien
    Herlem, Guillaume
    Jourdain, Vincent
    JOURNAL OF PHYSICAL CHEMISTRY C, 2021, 125 (42): : 22943 - 22950
  • [26] VISUALIZING THE UPTAKE AND INTRACELLULAR VESICLE TRANSPORT OF CARBON NANOTUBES TOWARD THE PERINUCLEAR REGION INSIDE CELLS
    Li, Jun
    Kang, Bin
    Chang, Shuquan
    Dai, Yaodong
    NANO, 2014, 9 (01)
  • [27] Polymerization of conducting polymers inside carbon nanotubes
    Steinmetz, Johannes
    Kwon, Soyoung
    Lee, Hyun-Jung
    Abou-Hamad, Edy
    Almairac, Robert
    Goze-Bac, Christophe
    Kim, Hwayong
    Park, Yung-Woo
    CHEMICAL PHYSICS LETTERS, 2006, 431 (1-3) : 139 - 144
  • [28] Dynamics of fluid flow inside carbon nanotubes
    Tuzun, RE
    Noid, DW
    Sumpter, BG
    Merkle, RC
    NANOTECHNOLOGY, 1996, 7 (03) : 241 - 246
  • [29] Carbon linear chains inside multiwalled nanotubes
    Cazzanelli, E.
    Caputi, L.
    Castriota, M.
    Cupolillo, A.
    Giallombardo, C.
    Papagno, L.
    SURFACE SCIENCE, 2007, 601 (18) : 3926 - 3932
  • [30] Structural transformations of carbon chains inside nanotubes
    Warner, Jamie H.
    Ruemmeli, Mark H.
    Bachmatiuk, Alicja
    Buechner, Bernd
    PHYSICAL REVIEW B, 2010, 81 (15):