Optimal control in nonequilibrium systems: Dynamic Riemannian geometry of the Ising model

被引:52
|
作者
Rotskoff, Grant M. [1 ]
Crooks, Gavin E. [2 ,3 ]
机构
[1] Univ Calif Berkeley, Biophys Grad Grp, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Biophys Div, Berkeley, CA 94720 USA
[3] Kavli Energy NanoSci Inst, Berkeley, CA 94720 USA
来源
PHYSICAL REVIEW E | 2015年 / 92卷 / 06期
关键词
THERMODYNAMICS; TRANSITION; SPEED; PATHS; LINE;
D O I
10.1103/PhysRevE.92.060102
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
A general understanding of optimal control in nonequilibrium systems would illuminate the operational principles of biological and artificial nanoscale machines. Recent work has shown that a system driven out of equilibrium by a linear response protocol is endowed with a Riemannian metric related to generalized susceptibilities, and that geodesics on this manifold are the nonequilibrium control protocols with the lowest achievable dissipation. While this elegant mathematical framework has inspired numerous studies of exactly solvable systems, no description of the thermodynamic geometry yet exists when the metric cannot be derived analytically. Herein, we numerically construct the dynamic metric of the two-dimensional Ising model in order to study optimal protocols for reversing the net magnetization.
引用
收藏
页数:5
相关论文
共 50 条
  • [31] NONEQUILIBRIUM PROPERTIES OF AN ISING-MODEL FERROMAGNET
    GOLDSTEIN, JC
    SCULLY, MO
    [J]. PHYSICAL REVIEW B, 1973, 7 (03) : 1084 - 1096
  • [32] Nonequilibrium quantum phase transitions in the Ising model
    Bastidas, V. M.
    Emary, C.
    Schaller, G.
    Brandes, T.
    [J]. PHYSICAL REVIEW A, 2012, 86 (06)
  • [33] Pseudo-Riemannian geometry encodes information geometry in optimal transport
    Wong T.-K.L.
    Yang J.
    [J]. Information Geometry, 2022, 5 (1) : 131 - 159
  • [34] Dynamic graphs, community detection, and Riemannian geometry
    Bakker C.
    Halappanavar M.
    Visweswara Sathanur A.
    [J]. Applied Network Science, 3 (1)
  • [35] Domain Number Distribution in the Nonequilibrium Ising Model
    E. Ben-Naim
    P. L. Krapivsky
    [J]. Journal of Statistical Physics, 1998, 93 : 583 - 601
  • [36] Nonequilibrium work fluctuations in a driven Ising model
    Gonnella, G.
    Pelizzola, A.
    Rondoni, L.
    Saracco, G. P.
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2009, 388 (14) : 2815 - 2820
  • [37] Dynamical critical exponent of a nonequilibrium Ising model
    Grandi, B.C.S.
    Figueiredo, W.
    [J]. Physical Review E. Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 1996, 54 (05):
  • [38] Domain number distribution in the Nonequilibrium Ising model
    Ben-Naim, E
    Krapivsky, PL
    [J]. JOURNAL OF STATISTICAL PHYSICS, 1998, 93 (3-4) : 583 - 601
  • [39] Dynamical critical exponent of a nonequilibrium Ising model
    Grandi, BCS
    Figueiredo, W
    [J]. PHYSICAL REVIEW E, 1996, 54 (05): : 4722 - 4725
  • [40] Optimal control of hybrid dynamic systems
    Liu, Zonglin
    Stursberg, Olaf
    [J]. AT-AUTOMATISIERUNGSTECHNIK, 2018, 66 (11) : 928 - 938