Statistical rigor in LiDAR-assisted estimation of aboveground forest biomass

被引:58
|
作者
Gregoire, Timothy G. [1 ]
Naesset, Erik [2 ]
McRoberts, Ronald E. [3 ]
Stahl, Goran [4 ]
Andersen, Hans-Erik [5 ]
Gobakken, Terje [2 ]
Ene, Liviu [2 ]
Nelson, Ross [6 ]
机构
[1] Yale Univ, Sch Forestry & Environm Studies, 360 Prospect St, New Haven, CT 06511 USA
[2] Norwegian Univ Life Sci, Dept Ecol & Nat Resource Management, POB 5003, NO-1432 As, Norway
[3] US Forest Serv, No Res Stn, St Paul, MN 55108 USA
[4] Swedish Univ Agr Sci, Dept Forest Resource Management & Geomat, S-90183 Umea, Sweden
[5] US Forest Serv, Pacific NW Res Stn, Seattle, WA 98195 USA
[6] NASA, Biospher Sci Branch, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA
关键词
Sampling; Statistical inference; Variance estimation; MODEL-BASED INFERENCE; POST-STRATIFIED ESTIMATION; GROWING STOCK VOLUME; HEDMARK COUNTY; SAMPLE SURVEY; SIMULATION APPROACH; FINITE POPULATIONS; BOOTSTRAP METHODS; AIRBORNE LIDAR; NORWAY;
D O I
10.1016/j.rse.2015.11.012
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
For many decades remotely sensed data have been used as a source of auxiliary information when conducting regional or national surveys of forest resources. In the past decade, airborne scanning LiDAR (Light Detection and Ranging) has emerged as a promising tool for sample surveys aimed at improving estimation of aboveground forest biomass. This technology is now employed routinely in forest management inventories of some Nordic countries, and there is eager anticipation for its application to assess changes in standing biomass in vast tropical regions of the globe in concert with the UN REDD program to limit C emissions. In the rapidly expanding literature on LiDAR-assisted biomass estimation the assessment of the uncertainty of estimation varies widely, ranging from statistically rigorous to ad hoc. In many instances, too, there appears to be no recognition of different bases of statistical inference which bear importantly on uncertainty estimation. Statistically rigorous assessment of uncertainty for four large LiDAR-assisted surveys is expounded. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:98 / 108
页数:11
相关论文
共 50 条
  • [11] Impact of data model and point density on aboveground forest biomass estimation from airborne LiDAR
    Mariano Garcia
    Sassan Saatchi
    Antonio Ferraz
    Carlos Alberto Silva
    Susan Ustin
    Alexander Koltunov
    Heiko Balzter
    [J]. Carbon Balance and Management, 12
  • [12] Aboveground biomass estimation of an old-growth mangrove forest using airborne LiDAR in the Philippines
    Mandal, Mohammad Shamim Hasan
    Suwa, Rempei
    Rollon, Rene N.
    Albano, Giannina Marie G.
    Cruz, Green Ann A.
    Ono, Kenji
    Primavera-Tirol, Yasmin H.
    Blanco, Ariel C.
    Nadaoka, Kazuo
    [J]. ECOLOGICAL RESEARCH, 2024,
  • [13] Estimation of tropical rain forest aboveground biomass with small-footprint lidar and hyperspectral sensors
    Clark, Matthew L.
    Roberts, Dar A.
    Ewel, John J.
    Clark, David B.
    [J]. REMOTE SENSING OF ENVIRONMENT, 2011, 115 (11) : 2931 - 2942
  • [14] Airborne Lidar Sampling Strategies to Enhance Forest Aboveground Biomass Estimation from Landsat Imagery
    Li, Siqi
    Quackenbush, Lindi J.
    Im, Jungho
    [J]. REMOTE SENSING, 2019, 11 (16)
  • [15] Slope-adaptive waveform metrics of large footprint lidar for estimation of forest aboveground biomass
    Wang, Yao
    Ni, Wenjian
    Sun, Guoqing
    Chi, Hong
    Zhang, Zhiyu
    Guo, Zhifeng
    [J]. REMOTE SENSING OF ENVIRONMENT, 2019, 224 : 386 - 400
  • [16] Impact of data model and point density on aboveground forest biomass estimation from airborne LiDAR
    Garcia, Mariano
    Saatchi, Sassan
    Ferraz, Antonio
    Silva, Carlos Alberto
    Ustin, Susan
    Koltunov, Alexander
    Balzter, Heiko
    [J]. CARBON BALANCE AND MANAGEMENT, 2017, 12
  • [17] Forest aboveground biomass estimation combining ICESat-2 and GEDI spaceborne LiDAR data
    Meng, Ge
    Zhao, Dan
    Xu, Cong
    Chen, Junhua
    Li, Xiuwen
    Zheng, Zhaoju
    Zeng, Yuan
    [J]. National Remote Sensing Bulletin, 2024, 28 (06) : 1632 - 1647
  • [18] JOINT MODELING OF SPACEBORNE RADAR AND LIDAR DATA WITH ENSEMBLE LEARNING FOR FOREST ABOVEGROUND BIOMASS ESTIMATION
    Jiang, Fu-Gen
    Ming-Dian-Li
    Chen, Si-Wei
    [J]. 2024 4TH URSI ATLANTIC RADIO SCIENCE MEETING, AT-RASC 2024, 2024,
  • [19] Forest classification and impact of BIOMASS resolution on forest area and aboveground biomass estimation
    Schlund, Michael
    Scipal, Klaus
    Davidson, Malcolm W. J.
    [J]. INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2017, 56 : 65 - 76
  • [20] Stratification-Based Forest Aboveground Biomass Estimation in a Subtropical Region Using Airborne Lidar Data
    Jiang, Xiandie
    Li, Guiying
    Lu, Dengsheng
    Chen, Erxue
    Wei, Xinliang
    [J]. REMOTE SENSING, 2020, 12 (07)