Statistical rigor in LiDAR-assisted estimation of aboveground forest biomass

被引:58
|
作者
Gregoire, Timothy G. [1 ]
Naesset, Erik [2 ]
McRoberts, Ronald E. [3 ]
Stahl, Goran [4 ]
Andersen, Hans-Erik [5 ]
Gobakken, Terje [2 ]
Ene, Liviu [2 ]
Nelson, Ross [6 ]
机构
[1] Yale Univ, Sch Forestry & Environm Studies, 360 Prospect St, New Haven, CT 06511 USA
[2] Norwegian Univ Life Sci, Dept Ecol & Nat Resource Management, POB 5003, NO-1432 As, Norway
[3] US Forest Serv, No Res Stn, St Paul, MN 55108 USA
[4] Swedish Univ Agr Sci, Dept Forest Resource Management & Geomat, S-90183 Umea, Sweden
[5] US Forest Serv, Pacific NW Res Stn, Seattle, WA 98195 USA
[6] NASA, Biospher Sci Branch, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA
关键词
Sampling; Statistical inference; Variance estimation; MODEL-BASED INFERENCE; POST-STRATIFIED ESTIMATION; GROWING STOCK VOLUME; HEDMARK COUNTY; SAMPLE SURVEY; SIMULATION APPROACH; FINITE POPULATIONS; BOOTSTRAP METHODS; AIRBORNE LIDAR; NORWAY;
D O I
10.1016/j.rse.2015.11.012
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
For many decades remotely sensed data have been used as a source of auxiliary information when conducting regional or national surveys of forest resources. In the past decade, airborne scanning LiDAR (Light Detection and Ranging) has emerged as a promising tool for sample surveys aimed at improving estimation of aboveground forest biomass. This technology is now employed routinely in forest management inventories of some Nordic countries, and there is eager anticipation for its application to assess changes in standing biomass in vast tropical regions of the globe in concert with the UN REDD program to limit C emissions. In the rapidly expanding literature on LiDAR-assisted biomass estimation the assessment of the uncertainty of estimation varies widely, ranging from statistically rigorous to ad hoc. In many instances, too, there appears to be no recognition of different bases of statistical inference which bear importantly on uncertainty estimation. Statistically rigorous assessment of uncertainty for four large LiDAR-assisted surveys is expounded. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:98 / 108
页数:11
相关论文
共 50 条
  • [1] Inference for lidar-assisted estimation of forest growing stock volume
    McRoberts, Ronald E.
    Naesset, Erik
    Gobakken, Terje
    [J]. REMOTE SENSING OF ENVIRONMENT, 2013, 128 : 268 - 275
  • [2] Area-based lidar-assisted estimation of forest standing volume
    Corona, Piermaria
    Fattorini, Lorenzo
    [J]. CANADIAN JOURNAL OF FOREST RESEARCH, 2008, 38 (11) : 2911 - 2916
  • [3] Forest Inventory and Aboveground Biomass Estimation with Terrestrial LiDAR in the Tropical Forest of Malaysia
    Beyene, Solomon M.
    Hussin, Yousif A.
    Kloosterman, Henk E.
    Ismail, Mohd Hasmadi
    [J]. CANADIAN JOURNAL OF REMOTE SENSING, 2020, 46 (02) : 130 - 145
  • [4] Airborne Lidar Estimation of Aboveground Forest Biomass in the Absence of Field Inventory
    Ferraz, Antonio
    Saatchi, Sassan
    Mallet, Clement
    Jacquemoud, Stephane
    Goncalves, Gil
    Silva, Carlos Alberto
    Soares, Paula
    Tome, Margarida
    Pereira, Luisa
    [J]. REMOTE SENSING, 2016, 8 (08)
  • [5] Carbon estimation using sampling to correct LiDAR-assisted enhanced forest inventory estimates
    Chen, Yingbing
    Kershaw, John A.
    Hsu, Yung-Han
    Yang, Ting-Ru
    [J]. FORESTRY CHRONICLE, 2020, 96 (01): : 9 - 19
  • [6] Methods for variable selection in LiDAR-assisted forest inventories
    Moser, Paolo
    Vibrans, Alexander C.
    McRoberts, Ronald E.
    Naesset, Erik
    Gobakken, Terje
    Chirici, Gherardo
    Mura, Matteo
    Marchetti, Marco
    [J]. FORESTRY, 2017, 90 (01): : 112 - 124
  • [7] Aboveground-Biomass Estimation of a Complex Tropical Forest in India Using Lidar
    Vega, Cedric
    Vepakomma, Udayalakshmi
    Morel, Jules
    Bader, Jean-Luc
    Rajashekar, Gopalakrishnan
    Jha, Chandra Shekhar
    Feret, Jerome
    Proisy, Christophe
    Pelissier, Raphael
    Dadhwal, Vinay Kumar
    [J]. REMOTE SENSING, 2015, 7 (08) : 10607 - 10625
  • [8] Fusion of airborne LiDAR data and hyperspectral imagery for aboveground and belowground forest biomass estimation
    Luo, Shezhou
    Wang, Cheng
    Xi, Xiaohuan
    Pan, Feifei
    Peng, Dailiang
    Zou, Jie
    Nie, Sheng
    Qin, Haiming
    [J]. ECOLOGICAL INDICATORS, 2017, 73 : 378 - 387
  • [9] LiDAR-Assisted Multi-Source Program (LAMP) for Measuring Above Ground Biomass and Forest Carbon
    Kauranne, Tuomo
    Joshi, Anup
    Gautam, Basanta
    Manandhar, Ugan
    Nepal, Santosh
    Peuhkurinen, Jussi
    Hamalainen, Jarno
    Junttila, Virpi
    Gunia, Katja
    Latva-Kayra, Petri
    Kolesnikov, Alexander
    Tegel, Katri
    Leppanen, Vesa
    [J]. REMOTE SENSING, 2017, 9 (02):
  • [10] Forest aboveground biomass estimation combining ICESat-2 and GEDI spaceborne LiDAR data
    Meng, Ge
    Zhao, Dan
    Xu, Cong
    Chen, Junhua
    Li, Xiuwen
    Zheng, Zhaoju
    Zeng, Yuan
    [J]. National Remote Sensing Bulletin, 2024, 28 (06) : 1632 - 1647