A geometric formulation of supersymmetry

被引:5
|
作者
Freedman, Daniel Z. [1 ,2 ,3 ,4 ]
Roest, Diederik [5 ]
Van Proeyen, Antoine [6 ]
机构
[1] Stanford Univ, SITP, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Phys, Stanford, CA 94305 USA
[3] MIT, Ctr Theoret Phys, Cambridge, MA 02139 USA
[4] MIT, Dept Math, Cambridge, MA 02139 USA
[5] Univ Groningen, Van Swinderen Inst Particle Phys & Grav, Nijenborgh 4, NL-9747 AG Groningen, Netherlands
[6] Katholieke Univ Leuven, Inst Theoret Phys, Celestijnenlaan 200D, B-3001 Leuven, Belgium
来源
基金
美国国家科学基金会;
关键词
Field Theory; Supersymmetry; REALIZATION;
D O I
10.1002/prop.201600106
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The scalar fields of supersymmetric models are coordinates of a geometric space. We propose a formulation of supersymmetry that is covariant with respect to reparametrizations of this target space. Employing chiral multiplets as an example, we introduce modified supersymmetry variations and redefined auxiliary fields that transform covariantly under reparametrizations. The resulting action and transformation laws are manifestly covariant and highlight the geometric structure of the supersymmetric theory. The covariant methods are developed first for general theories (not necessarily supersymmetric) whose scalar fields are coordinates of a Riemannian target space.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] DUFFIN-KEMMER-PETIAU FORMULATION OF SUPERSYMMETRY
    GASTMANS, R
    TROOST, W
    NUCLEAR PHYSICS B, 1978, 140 (03) : 423 - 428
  • [22] Formulation of supersymmetry on a lattice as a representation of a deformed superalgebra
    D'Adda, Alessandro
    Kawamoto, Noboru
    Saito, Jun
    PHYSICAL REVIEW D, 2010, 81 (06)
  • [23] Supergravity couplings:: a geometric formulation
    Binétruy, P
    Girardi, G
    Grimm, R
    PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2001, 343 (4-5): : 256 - 462
  • [24] SUPERFIELD FORMULATION OF ANTI-DE SITTER SUPERSYMMETRY
    BELLUCCI, S
    GONZALEZ, J
    CLASSICAL AND QUANTUM GRAVITY, 1989, 6 (04) : 505 - 517
  • [25] Development of Geometric Formulation of Elasticity
    Kosmas, Odysseas
    Jivkov, Andrey
    PROCEEDINGS OF THE FIRST INTERNATIONAL CONFERENCE ON THEORETICAL, APPLIED AND EXPERIMENTAL MECHANICS, 2019, 5 : 262 - 267
  • [26] A GEOMETRIC FORMULATION OF THE EQUIVALENCE PRINCIPLE
    COLEMAN, RA
    SCHMIDT, HJ
    JOURNAL OF MATHEMATICAL PHYSICS, 1995, 36 (03) : 1328 - 1346
  • [27] A GEOMETRIC FORMULATION OF THE HIGGS MECHANISM
    TALMADGE, A
    JOURNAL OF MATHEMATICAL PHYSICS, 1992, 33 (05) : 1864 - 1868
  • [28] On the geometric formulation of Hamiltonian dynamics
    Calderon, Eran
    Horwitz, Lawrence
    Kupferman, Raz
    Shnider, Steven
    CHAOS, 2013, 23 (01)
  • [29] Geometric formulation of orientation tolerances
    Gou, JB
    Chu, YX
    Wu, H
    Li, ZX
    1998 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, VOLS 1-4, 1998, : 2728 - 2733
  • [30] Geometric formulation of the uncertainty principle
    Bosyk, G. M.
    Osan, T. M.
    Lamberti, P. W.
    Portesi, M.
    PHYSICAL REVIEW A, 2014, 89 (03):