Miniaturized Devices for Bioluminescence Imaging in Freely Behaving Animals

被引:0
|
作者
Celinskis, Dmitrijs [1 ,2 ]
Friedman, Nina [2 ,3 ]
Koksharov, Mikhail [2 ,3 ]
Murphy, Jeremy [2 ,3 ]
Gomez-Ramirez, Manuel [4 ]
Borton, David [5 ]
Shaner, Nathan [6 ]
Hochgeschwender, Ute [7 ]
Lipscombe, Diane [2 ,3 ]
Moore, Christopher [2 ,3 ]
机构
[1] Brown Univ, Sch Engn Ctr Biomed Engn, Providence, RI 02912 USA
[2] Brown Univ, Carney Inst Brain Sci, Providence, RI 02912 USA
[3] Brown Univ, Neurosci Dept, Providence, RI 02912 USA
[4] Univ Rochester, Sch Arts & Sci, Rochester, NY 14627 USA
[5] Brown Univ, Sch Engn, Carney Inst Brain Sci, Dept Vet Affairs,Providence Med Ctr Ctr Neurorest, Providence, RI 02912 USA
[6] Univ Calif San Diego, Sch Hlth Sci, San Diego, CA 92121 USA
[7] Cent Michigan Univ, Coll Med, Mount Pleasant, MI 48858 USA
关键词
D O I
暂无
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
In vivo fluorescence miniature microscopy has recently proven a major advance, enabling cellular imaging in freely behaving animals. However, fluorescence imaging suffers from autofluorescence, phototoxicity, photobleaching and non-homogeneous illumination artifacts. These factors limit the quality and time course of data collection. Bioluminescence provides an alternative kind of activity-dependent light indicator. Bioluminescent calcium indicators do not require light input, instead generating photons through chemiluminescence. As such, limitations inherent to the requirement for light presentation are eliminated. Further, bioluminescent indicators also do not require excitation light optics: the removal of these components should make a lighter and lower cost microscope with fewer assembly parts. While there has been significant recent progress in making brighter and faster bioluminescence indicators, the advances in imaging hardware have not yet been realized. A hardware challenge is that despite potentially higher signal-to-noise of bioluminescence, the signal strength is lower than that of fluorescence. An open question we address in this report is whether fluorescent miniature microscopes can be rendered sensitive enough to detect bioluminescence. We demonstrate this possibility in vitro and in vivo by implementing optimizations of the UCLA fluorescent miniscope v3.2. These optimizations yielded a miniscope (BLmini) which is 22% lighter in weight, has 45% fewer components, is up to 58% less expensive, offers up to 15 times stronger signal and is sensitive enough to capture spatiotemporal dynamics of bioluminescence in the brain with a signal-to-noise ratio of 34 dB.
引用
收藏
页码:4385 / 4389
页数:5
相关论文
共 50 条
  • [41] Functional imaging in freely moving animals
    Kerr, Jason N. D.
    Nimmerjahn, Axel
    [J]. CURRENT OPINION IN NEUROBIOLOGY, 2012, 22 (01) : 45 - 53
  • [42] NeuBtracker-imaging neurobehavioral dynamics in freely behaving fish
    Symvoulidis, Panagiotis
    Lauri, Antonella
    Stefanoiu, Anca
    Cappetta, Michele
    Schneider, Steffen
    Jia, Hongbo
    Stelzl, Anja
    Koch, Maximilian
    Perez, Carlos Cruz
    Myklatun, Ahne
    Renninger, Sabine
    Chmyrov, Andriy
    Lasser, Tobias
    Wurst, Wolfgang
    Ntziachristos, Vasilis
    Westmeyer, Gil G.
    [J]. NATURE METHODS, 2017, 14 (11) : 1079 - +
  • [43] A wireless neural recording system with a precision motorized microdrive for freely behaving animals
    Hasegawa, Taku
    Fujimoto, Hisataka
    Tashiro, Koichiro
    Nonomura, Mayu
    Tsuchiya, Akira
    Watanabe, Dai
    [J]. SCIENTIFIC REPORTS, 2015, 5
  • [44] MINIATURIZED PHOTOCELL ASSEMBLY FOR MONITORING HEART-RATE IN FREELY BEHAVING APLYSIA (MOLLUSCA - GASTROPODA)
    FEINSTEIN, R
    ASPEY, WP
    SCHMALE, MC
    [J]. BEHAVIORAL BIOLOGY, 1976, 17 (02): : 271 - 278
  • [45] Extendable, miniaturized multi-modal optical imaging system: cortical hemodynamic observation in freely moving animals
    Liu, Rui
    Huang, Qin
    Li, Bing
    Yin, Cui
    Jiang, Chao
    Wang, Jia
    Lu, Jinling
    Luo, Qingmin
    Li, Pengcheng
    [J]. OPTICS EXPRESS, 2013, 21 (02): : 1911 - 1924
  • [46] A miniaturized intrinsic optical sensing system (MiniIOS) for hemodynamic monitoring in freely-behaving rodents
    Yu, Linhui
    Murari, Kartikeya
    [J]. NEURAL IMAGING AND SENSING 2019, 2019, 10865
  • [47] Evaluation of two minimally invasive techniques for electroencephalogram recording in wild or freely behaving animals
    M. F. Scriba
    W. M. Harmening
    C. Mettke-Hofmann
    A. L. Vyssotski
    A. Roulin
    H. Wagner
    N. C. Rattenborg
    [J]. Journal of Comparative Physiology A, 2013, 199 : 183 - 189
  • [48] Functional characterization of neuropiles in the crayfish brain: a study on freely behaving animals by optical telemetry
    Hama, Noriyuki
    Tsuchida, Yoshikazu
    Takahata, Masakazu
    [J]. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY B-BIOCHEMISTRY & MOLECULAR BIOLOGY, 2008, 151 (04): : 452 - 452
  • [49] Imaging the Dynamics of Neocortical Population Activity in Behaving and Freely Moving Mammals
    Grinvald, Amiram
    Petersen, Carl C. H.
    [J]. MEMBRANE POTENTIAL IMAGING IN THE NERVOUS SYSTEM AND HEART, 2015, 859 : 273 - 296
  • [50] Calcium imaging of multiple neurons in freely behaving C. elegans
    Zheng, Maohua
    Cao, Pengxiu
    Yang, Jiong
    Xu, X. Z. Shawn
    Feng, Zhaoyang
    [J]. JOURNAL OF NEUROSCIENCE METHODS, 2012, 206 (01) : 78 - 82