Prediction-weighted partial least-squares regression method (PWPLS)

被引:1
|
作者
Tominaga, Y
Fujiwara, I
机构
[1] Department of Chemistry I, Discovery Research Laboratories I, Dainippon Pharmaceutical Co., Ltd., Enoki 33-94
关键词
partial least squares; weighted variables;
D O I
10.1016/S0169-7439(97)00043-9
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Prediction-weighted partial least-squares (PWPLS) is a progressive approach of partial least-squares (PLS) regression. PWPLS is a simple, efficient, and evolutionary algorithm to select appropriate predictor variables, and weight each selected predictor variable for improving predictability when there is only one dependent variable. We applied PWPLS to two QSAR data sets, and compared the predictability results of PWPLS with that of PLS. (C) 1997 Elsevier Science B.V.
引用
收藏
页码:139 / 144
页数:6
相关论文
共 50 条
  • [41] ANOVA INTERACTIONS INTERPRETED BY PARTIAL LEAST-SQUARES REGRESSION
    AASTVEIT, AH
    MARTENS, H
    [J]. BIOMETRICS, 1986, 42 (04) : 829 - 844
  • [42] Weighted least-squares regression in practice: Selection of the weighting exponent
    Kuss, HJ
    [J]. LC GC EUROPE, 2003, 16 (12) : 819 - +
  • [43] SOME APPLICATIONS OF THE PARTIAL LEAST-SQUARES METHOD
    CLEMENTI, S
    CRUCIANI, G
    CURTI, G
    [J]. ANALYTICA CHIMICA ACTA, 1986, 191 : 149 - 160
  • [44] NONOPTIMALLY WEIGHTED LEAST-SQUARES
    BLOCH, DA
    MOSES, LE
    [J]. AMERICAN STATISTICIAN, 1988, 42 (01): : 50 - 53
  • [45] The Method of Fundamental Solutions: A weighted least-squares approach
    Smyrlis, YS
    [J]. BIT NUMERICAL MATHEMATICS, 2006, 46 (01) : 163 - 194
  • [46] ON THE WEIGHTED LEAST-SQUARES METHOD FOR FITTING A SEMIVARIOGRAM MODEL
    ZHANG, XF
    VANEIJKEREN, JCH
    HEEMINK, AW
    [J]. COMPUTERS & GEOSCIENCES, 1995, 21 (04) : 605 - 608
  • [47] LEAST-SQUARES PREDICTION
    HARDY, RL
    [J]. PHOTOGRAMMETRIC ENGINEERING AND REMOTE SENSING, 1977, 43 (04): : 475 - 492
  • [48] WEIGHTED LEAST-SQUARES AND TRACKING
    BERCU, B
    DUFLO, M
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 1992, 28 (03): : 403 - 430
  • [49] The Method of Fundamental Solutions: A Weighted Least-Squares Approach
    Yiorgos-Sokratis Smyrlis
    [J]. BIT Numerical Mathematics, 2006, 46 : 163 - 194
  • [50] Subsampling for partial least-squares regression via an influence function
    Xie, Zhonghao
    Feng, Xi'an
    Chen, Xiaojing
    [J]. KNOWLEDGE-BASED SYSTEMS, 2022, 245