The number of rational points on Drinfeld modular varieties over finite fields

被引:0
|
作者
Papikian, Mihran [1 ]
机构
[1] Stanford Univ, Dept Math, Stanford, CA 94305 USA
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Drinfeld and Vladut proved that Drinfeld modular curves have many F(q)2-rational points compared to their genera. We propose a conjectural generalization of this result to higher dimensional Drinfeld modular varieties, and prove a theorem giving evidence for the conjecture.
引用
收藏
页数:36
相关论文
共 50 条
  • [31] ON THE NUMBER OF RATIONAL POINTS OF GENERALIZED FERMAT CURVES OVER FINITE FIELDS
    Fanali, Stefania
    Giulietti, Massimo
    [J]. INTERNATIONAL JOURNAL OF NUMBER THEORY, 2012, 8 (04) : 1087 - 1097
  • [32] Counting rational points of two classes of algebraic varieties over finite fields
    Zhu, Guangyan
    Qiang, Shiyuan
    Li, Mao
    [J]. AIMS MATHEMATICS, 2023, 8 (12): : 30511 - 30526
  • [33] Weil polynomials of abelian varieties over finite fields with many rational points
    Berardini, Elena
    Giangreco-Maidana, Alejandro J.
    [J]. INTERNATIONAL JOURNAL OF NUMBER THEORY, 2022, 18 (07) : 1591 - 1603
  • [34] Modular Abelian Varieties Over Number Fields
    Guitart, Xavier
    Quer, Jordi
    [J]. CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2014, 66 (01): : 170 - 196
  • [35] Rational points and zero-cycles on rationally connected varieties over number fields
    Wittenberg, Olivier
    [J]. ALGEBRAIC GEOMETRY: SALT LAKE CITY 2015, PT 2, 2018, 97 : 597 - 635
  • [36] Lower bounds on the maximal number of rational points on curves over finite fields
    Bergstrom, Jonas
    Howe, Everett w.
    Garcia, Elisa Lorenzo
    Ritzenthaler, Christophe
    [J]. MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2024, 176 (01) : 213 - 238
  • [37] The number of rational points of certain quartic diagonal hypersurfaces over finite fields
    Zhao, Junyong
    Hong, Shaofang
    Zhu, Chaoxi
    [J]. AIMS MATHEMATICS, 2020, 5 (03): : 2710 - 2731
  • [38] On the number of rational points on some families of Fermat curves over finite fields
    Moisio, Marko
    [J]. FINITE FIELDS AND THEIR APPLICATIONS, 2007, 13 (03) : 546 - 562
  • [39] Rational points in flag varieties over function fields
    Lai, KF
    Yeung, KM
    [J]. JOURNAL OF NUMBER THEORY, 2002, 95 (02) : 142 - 149
  • [40] RATIONAL POINTS OF ABELIAN VARIETIES OVER FUNCTION FIELDS
    LANG, S
    NERON, A
    [J]. AMERICAN JOURNAL OF MATHEMATICS, 1959, 81 (01) : 95 - 118