An Expressive Hadoop MapReduce Framework

被引:0
|
作者
Shah, Nathar [1 ,3 ]
Messom, Christopher [2 ]
机构
[1] Multimedia Univ, Fac Comp & Informat, Cyberjaya 63100, Malaysia
[2] Monash Univ, Sch Informat Technol, Clayton, Vic 3800, Australia
[3] Monash Univ, Sch Informat Technol, Bandar Sunway 47500, Malaysia
关键词
Expressive; Hadoop MapReduce; Parallel Trees;
D O I
10.1166/asl.2017.10250
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The traditional Hadoop MapReduce framework is a simple programming model for large scale parallel and distributed data processing. However, the model is not structured for semantic-oriented large data processing since it is not expressive. This paper presents a tree-oriented approach to enable expressiveness in the traditional Hadoop MapReduce framework. The new tree based MapReduce structure provides for group based processing, level based processing, and traversal order based processing. Stand-alone or nested, these processing constructs provides the required expressivity for semantic-oriented large data processing. This is accomplished yet preserving the fundamental benefit of traditional MapReduce framework-fault-tolerant processing.
引用
收藏
页码:11197 / 11201
页数:5
相关论文
共 50 条
  • [21] ST-Hadoop: a MapReduce framework for spatio-temporal data
    Alarabi, Louai
    Mokbel, Mohamed F.
    Musleh, Mashaal
    [J]. GEOINFORMATICA, 2018, 22 (04) : 785 - 813
  • [22] Optimizing the Hadoop MapReduce Framework with high-performance storage devices
    Sangwhan Moon
    Jaehwan Lee
    Xiling Sun
    Yang-suk Kee
    [J]. The Journal of Supercomputing, 2015, 71 : 3525 - 3548
  • [23] ST-Hadoop: a MapReduce framework for spatio-temporal data
    Louai Alarabi
    Mohamed F. Mokbel
    Mashaal Musleh
    [J]. GeoInformatica, 2018, 22 : 785 - 813
  • [24] Optimizing the Hadoop MapReduce Framework with high-performance storage devices
    Moon, Sangwhan
    Lee, Jaehwan
    Sun, Xiling
    Kee, Yang-suk
    [J]. JOURNAL OF SUPERCOMPUTING, 2015, 71 (09): : 3525 - 3548
  • [25] An overview of the Hadoop/MapReduce/HBase framework and its current applications in bioinformatics
    Ronald C Taylor
    [J]. BMC Bioinformatics, 11
  • [26] Weighted Finite Automata based Image Compression on Hadoop MapReduce Framework
    Raju, U. S. N.
    Sandeep, Irlanki
    Karthik, Nattam Sai
    Praveen, Rayapudi Siva
    Sachan, Mayank Singh
    [J]. 2015 IEEE INTERNATIONAL CONGRESS ON BIG DATA - BIGDATA CONGRESS 2015, 2015, : 653 - 656
  • [27] Performance Comparison of Distributed Pattern Matching Algorithms on Hadoop MapReduce Framework
    Sona, C. P.
    Mulerikkal, Jaison Paul
    [J]. MOBILE NETWORKS AND MANAGEMENT (MONAMI 2017), 2018, 235 : 45 - 55
  • [28] Hadoop MapReduce for Mobile Clouds
    George, Johnu
    Chen, Chien-An
    Stoleru, Radu
    Xie, Geoffrey G.
    [J]. IEEE TRANSACTIONS ON CLOUD COMPUTING, 2019, 7 (01) : 224 - 236
  • [29] Improving the Shuffle of Hadoop MapReduce
    Li, Jingui
    Lin, Xuelian
    Cui, Xiaolong
    Ye, Yue
    [J]. 2013 IEEE FIFTH INTERNATIONAL CONFERENCE ON CLOUD COMPUTING TECHNOLOGY AND SCIENCE (CLOUDCOM), VOL 1, 2013, : 266 - 273
  • [30] Hadoop MapReduce for Tactical Clouds
    George, Johnu
    Chen, Chien-An
    Stoleru, Radu
    Xie, Geoffrey G.
    Sookoor, Tamim
    Bruno, David
    [J]. 2014 IEEE 3RD INTERNATIONAL CONFERENCE ON CLOUD NETWORKING (CLOUDNET), 2014, : 320 - 326