Natural variation and the capacity to adapt to ocean acidification in the keystone sea urchin Strongylocentrotus purpuratus

被引:156
|
作者
Kelly, Morgan W. [1 ]
Padilla-Gamino, Jacqueline L. [1 ]
Hofmann, Gretchen E. [1 ]
机构
[1] Univ Calif Santa Barbara, Dept Ecol Evolut & Marine Biol, Santa Barbara, CA 93106 USA
基金
美国国家科学基金会;
关键词
climate change; local adaptation; marine invertebrates; ocean acidification; quantitative genetics; rapid evolution; CLIMATE-CHANGE; PHENOTYPIC PLASTICITY; GENETIC-VARIATION; EVOLUTION; SELECTION; POPULATIONS; EXTINCTION; IMPACTS; SIZE; COCCOLITHOPHORES;
D O I
10.1111/gcb.12251
中图分类号
X176 [生物多样性保护];
学科分类号
090705 ;
摘要
A rapidly growing body of literature documents the potential negative effects of CO2-driven ocean acidification (OA) on marine organisms. However, nearly all this work has focused on the effects of future conditions on modern populations, neglecting the role of adaptation. Rapid evolution can alter demographic responses to environmental change, ultimately affecting the likelihood of population persistence, but the capacity for adaptation will differ among populations and species. Here, we measure the capacity of the ecologically important purple sea urchin Strongylocentrotus purpuratus to adapt to OA, using a breeding experiment to estimate additive genetic variance for larval size (an important component of fitness) under future high-pCO(2)/low-pH conditions. Although larvae reared under future conditions were smaller than those reared under present-day conditions, we show that there is also abundant genetic variation for body size under elevated pCO(2), indicating that this trait can evolve. The observed heritability of size was 0.40 +/- 0.32 (95% CI) under low pCO(2), and 0.50 +/- 0.30 under high-pCO(2) conditions. Accounting for the observed genetic variation in models of future larval size and demographic rates substantially alters projections of performance for this species in the future ocean. Importantly, our model shows that after incorporating the effects of adaptation, the OA-driven decrease in population growth rate is up to 50% smaller, than that predicted by the no-adaptation' scenario. Adults used in the experiment were collected from two sites on the coast of the Northeast Pacific that are characterized by different pH regimes, as measured by autonomous sensors. Comparing results between sites, we also found subtle differences in larval size under high-pCO(2) rearing conditions, consistent with local adaptation to carbonate chemistry in the field. These results suggest that spatially varying selection may help to maintain genetic variation necessary for adaptation to future OA.
引用
收藏
页码:2536 / 2546
页数:11
相关论文
共 50 条
  • [1] Natural variation, and the capacity to adapt to ocean acidification in the sea urchin Strongylocentrotus purpuratus
    Kelly, M. W.
    Padilla-Gamino, J. L.
    Hofmann, G. E.
    [J]. INTEGRATIVE AND COMPARATIVE BIOLOGY, 2013, 53 : E108 - E108
  • [2] Ocean acidification research in the 'post-genomic' era: Roadmaps from the purple sea urchin Strongylocentrotus purpuratus
    Evans, Tyler G.
    Padilla-Gamino, Jacqueline L.
    Kelly, Morgan W.
    Pespeni, Melissa H.
    Chan, Francis
    Menge, Bruce A.
    Gaylord, Brian
    Hill, Tessa M.
    Russell, Ann D.
    Palumbi, Stephen R.
    Sanford, Eric
    Hofmann, Gretchen E.
    [J]. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY A-MOLECULAR & INTEGRATIVE PHYSIOLOGY, 2015, 185 : 33 - 42
  • [3] ALGINASE IN THE SEA URCHIN STRONGYLOCENTROTUS PURPURATUS
    EPPLEY, RW
    LASKER, R
    [J]. SCIENCE, 1959, 129 (3343) : 214 - 215
  • [4] HATCHING ENZYME OF SEA URCHIN STRONGYLOCENTROTUS PURPURATUS
    BARRETT, D
    [J]. AMERICAN ZOOLOGIST, 1968, 8 (04): : 816 - &
  • [5] The larval stages of the sea urchin, Strongylocentrotus purpuratus
    Smith, M. Meighan
    Smith, Luisa Cruz
    Cameron, R. Andrew
    Urry, Lisa A.
    [J]. JOURNAL OF MORPHOLOGY, 2008, 269 (06) : 713 - 733
  • [6] CASE OF OVOTESTES IN THE SEA URCHIN STRONGYLOCENTROTUS PURPURATUS
    BOOLOOTIAN, RA
    MOORE, AR
    [J]. SCIENCE, 1959, 129 (3344) : 271 - 272
  • [7] NUTRITION OF THE SEA URCHIN, STRONGYLOCENTROTUS-PURPURATUS
    LASKER, R
    GIESE, AC
    [J]. BIOLOGICAL BULLETIN, 1954, 106 (03): : 328 - 340
  • [8] Research article -: The genome of the sea urchin Strongylocentrotus purpuratus
    Sodergren, Erica
    Weinstock, George M.
    Davidson, Eric H.
    Cameron, R. Andrew
    Gibbs, Richard A.
    Weinstock, George M.
    Angerer, Robert C.
    Angerer, Lynne M.
    Arnone, Maria Ina
    Burgess, David R.
    Burke, Robert D.
    Cameron, R. Andrew
    Coffman, James A.
    Davidson, Eric H.
    Dean, Michael
    Elphick, Maurice R.
    Ettensohn, Charles A.
    Foltz, Kathy R.
    Hamdoun, Amro
    Hynes, Richard O.
    Klein, William H.
    Marzluff, William
    McClay, David R.
    Morris, Robert L.
    Mushegian, Arcady
    Rast, Jonathan P.
    Sodergren, Erica
    Smith, L. Courtney
    Thorndyke, Michael C.
    Vacquier, Victor D.
    Weinstock, George M.
    Wessel, Gary M.
    Wray, Greg
    Zhang, Lan
    Sodergren, Erica
    Weinstock, George M.
    Angerer, Robert C.
    Angerer, Lynne M.
    Cameron, R. Andrew
    Davidson, Eric H.
    Elsik, Christine G.
    Ermolaeva, Olga
    Hlavina, Wratko
    Hofmann, Gretchen
    Kitts, Paul
    Landrum, Melissa J.
    Mackey, Aaron J.
    Maglott, Donna
    Panopoulou, Georgia
    Poustka, Albert J.
    [J]. SCIENCE, 2006, 314 (5801) : 941 - 952
  • [9] The sea urchin (Strongylocentrotus purpuratus) test and spine proteomes
    Karlheinz Mann
    Albert J Poustka
    Matthias Mann
    [J]. Proteome Science, 6
  • [10] Quantitative developmental transcriptomes of the sea urchin Strongylocentrotus purpuratus
    Tu, Qiang
    Cameron, R. Andrew
    Davidson, Eric H.
    [J]. DEVELOPMENTAL BIOLOGY, 2014, 385 (02) : 160 - 167