Beyond pointwise submodularity: Non-monotone adaptive submodular maximization in linear time

被引:15
|
作者
Tang, Shaojie [1 ]
机构
[1] Univ Texas Dallas, Naveen Jindal Sch Management, Richardson, TX 75083 USA
关键词
Submodular maximization; Adaptive submodularity; Cardinality constraint;
D O I
10.1016/j.tcs.2020.11.007
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper, we study the non-monotone adaptive submodular maximization problem subject to a cardinality constraint. We first revisit the adaptive random greedy algorithm proposed in [13], where they show that this algorithm achieves a 1/e approximation ratio if the objective function is adaptive submodular and pointwise submodular. It is not clear whether the same guarantee holds under adaptive submodularity (without resorting to pointwise submodularity) or not. Our first contribution is to show that the adaptive random greedy algorithm achieves a 1/e approximation ratio under adaptive submodularity. One limitation of the adaptive random greedy algorithm is that it requires O(n x k) value oracle queries, where n is the size of the ground set and k is the cardinality constraint. Our second contribution is to develop the first linear-time algorithm for the non-monotone adaptive submodular maximization problem. Our algorithm achieves a 1/e - epsilon approximation ratio (this bound is improved to 1 - 1/e - epsilon for monotone case), using only O(n epsilon(-2) log epsilon(-1)) value oracle queries. Notably, O(n epsilon(-2) log epsilon(-1)) is independent of the cardinality constraint. For the monotone case, we propose a faster algorithm that achieves a 1 - 1/e - epsilon approximation ratio in expectation with O(n log 1/epsilon ) value oracle queries. We also generalize our study by considering a partition matroid constraint, and develop a linear-time algorithm for monotone and fully adaptive submodular functions. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页码:249 / 261
页数:13
相关论文
共 50 条
  • [21] Linear Query Approximation Algorithms for Non-monotone Submodular Maximization under Knapsack Constraint
    Pham, Canh V.
    Tran, Tan D.
    Ha, Dung T. K.
    Thai, My T.
    PROCEEDINGS OF THE THIRTY-SECOND INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2023, 2023, : 4127 - 4135
  • [22] Optimal algorithms for continuous non-monotone submodular and DR-submodular maximization
    Niazadeh, Rad
    Roughgarden, Tim
    Wang, Joshua R.
    Journal of Machine Learning Research, 2020, 21
  • [23] Optimal Algorithms for Continuous Non-monotone Submodular and DR-Submodular Maximization
    Niazadeh, Rad
    Roughgarden, Tim
    Wang, Joshua R.
    JOURNAL OF MACHINE LEARNING RESEARCH, 2020, 21
  • [24] Constrained Non-monotone Submodular Maximization: Offline and Secretary Algorithms
    Gupta, Anupam
    Roth, Aaron
    Schoenebeck, Grant
    Talwar, Kunal
    INTERNET AND NETWORK ECONOMICS, 2010, 6484 : 246 - +
  • [25] Parallel Algorithm for Non-Monotone DR-Submodular Maximization
    Ene, Alina
    Nguyen, Huy L.
    25TH AMERICAS CONFERENCE ON INFORMATION SYSTEMS (AMCIS 2019), 2019,
  • [26] Non-monotone Submodular Maximization under Matroid and Knapsack Constraints
    Lee, Jon
    Mirrokni, Vahab S.
    Nagarajan, Viswanath
    Sviridenko, Maxim
    STOC'09: PROCEEDINGS OF THE 2009 ACM SYMPOSIUM ON THEORY OF COMPUTING, 2009, : 323 - 332
  • [27] Parallel Algorithm for Non-Monotone DR-Submodular Maximization
    Ene, Alina
    Nguyen, Huy L.
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 119, 2020, 119
  • [28] Profit maximization in social networks and non-monotone DR-submodular maximization
    Gu, Shuyang
    Gao, Chuangen
    Huang, Jun
    Wu, Weili
    THEORETICAL COMPUTER SCIENCE, 2023, 957
  • [29] On Maximizing Sums of Non-monotone Submodular and Linear Functions
    Qi, Benjamin
    ALGORITHMICA, 2024, 86 (04) : 1080 - 1134
  • [30] Non-monotone Adaptive Submodular Meta-Learning
    Tang, Shaojie
    Yuan, Jing
    PROCEEDINGS OF THE 2021 SIAM CONFERENCE ON APPLIED AND COMPUTATIONAL DISCRETE ALGORITHMS, ACDA21, 2021, : 57 - 65