A Deep Connection Between the Vapnik-Chervonenkis Entropy and the Rademacher Complexity

被引:17
|
作者
Anguita, Davide [1 ]
Ghio, Alessandro [1 ]
Oneto, Luca [1 ]
Ridella, Sandro [1 ]
机构
[1] Univ Genoa, Dept Elect Elect Telecommun Engn & Naval Architec, I-16145 Genoa, Italy
关键词
Complexity measures; Rademacher complexity; statistical learning theory; Vapnik-Chervonenkis (VC) entropy; MODEL SELECTION; INEQUALITIES; DIMENSION;
D O I
10.1109/TNNLS.2014.2307359
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we derive a deep connection between the Vapnik-Chervonenkis (VC) entropy and the Rademacher complexity. For this purpose, we first refine some previously known relationships between the two notions of complexity and then derive new results, which allow computing an admissible range for the Rademacher complexity, given a value of the VC-entropy, and vice versa. The approach adopted in this paper is new and relies on the careful analysis of the combinatorial nature of the problem. The obtained results improve the state of the art on this research topic.
引用
收藏
页码:2202 / 2211
页数:10
相关论文
共 50 条
  • [41] Vapnik-Chervonenkis dimension of axis-parallel cuts
    Gey, Servane
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2018, 47 (09) : 2291 - 2296
  • [42] Vapnik-Chervonenkis (VC) learning theory and its applications
    Cherkassky, V
    Mulier, F
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS, 1999, 10 (05): : 985 - 987
  • [43] Vapnik-Chervonenkis dimension of neural networks with binary weights
    Mertens, S
    Engel, A
    [J]. PHYSICAL REVIEW E, 1997, 55 (04) : 4478 - 4488
  • [44] Adaptive Neural Topology Based on Vapnik-Chervonenkis Dimension
    Perez-Sanchez, Beatriz
    Fontenla-Romero, Oscar
    Guijarro-Berdinas, Bertha
    [J]. AGENTS AND ARTIFICIAL INTELLIGENCE, ICAART 2014, 2015, 8946 : 194 - 210
  • [45] Vapnik-Chervonenkis generalization bounds for real valued neural networks
    Hole, A
    [J]. NEURAL COMPUTATION, 1996, 8 (06) : 1277 - 1299
  • [46] General Vapnik-Chervonenkis dimension bounds for quantum circuit learning
    Chen, Chih-Chieh
    Sogabe, Masaru
    Shiba, Kodai
    Sakamoto, Katsuyoshi
    Sogabe, Tomah
    [J]. JOURNAL OF PHYSICS-COMPLEXITY, 2022, 3 (04):
  • [47] INAPPROXIMABILITY OF TRUTHFUL MECHANISMS VIA GENERALIZATIONS OF THE VAPNIK-CHERVONENKIS DIMENSION
    Daniely, Amit
    Schapira, Michael
    Shahaf, Gal
    [J]. SIAM JOURNAL ON COMPUTING, 2018, 47 (01) : 96 - 120
  • [48] Lower bounds on the vapnik-chervonenkis dimension of convex polytope classifiers
    Takacs, Gabor
    Pataki, Bela
    [J]. INES 2007: 11TH INTERNATIONAL CONFERENCE ON INTELLIGENT ENGINEERING SYSTEMS, PROCEEDINGS, 2007, : 145 - +
  • [49] UNIFORM CONVERGENCE OF VAPNIK-CHERVONENKIS CLASSES UNDER ERGODIC SAMPLING
    Adams, Terrence M.
    Nobel, Andrew B.
    [J]. ANNALS OF PROBABILITY, 2010, 38 (04): : 1345 - 1367
  • [50] Vapnik-Chervonenkis type conditions and uniform Donsker classes of functions
    Talagrand, M
    [J]. ANNALS OF PROBABILITY, 2003, 31 (03): : 1565 - 1582