Perpetual American options with fractional Brownian motion

被引:34
|
作者
Elliott, RJ
Chan, LL
机构
[1] Univ Calgary, Haskayne Sch Business, Calgary, AB T2N 1N4, Canada
[2] Univ Calgary, Dept Math & Stat, Calgary, AB T2N 1N4, Canada
关键词
D O I
10.1088/1469-7688/4/2/001
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
In this paper, we derive a closed form solution for the value of a perpetual American option when the logreturn of a stock is driven by a fractional Brownian motion, with Hurst parameter H is an element of (0, 1). A special case of our model would be the model driven by standard Brownian motion.
引用
收藏
页码:123 / 128
页数:6
相关论文
共 50 条
  • [31] Properties of perpetual integral functionals of Brownian motion with drift
    Salminen, P
    Yor, M
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2005, 41 (03): : 335 - 347
  • [32] On the maximum of a fractional Brownian motion
    Molchan, GM
    THEORY OF PROBABILITY AND ITS APPLICATIONS, 1999, 44 (01) : 97 - 102
  • [33] Oscillatory Fractional Brownian Motion
    Bojdecki, T.
    Gorostiza, L. G.
    Talarczyk, A.
    ACTA APPLICANDAE MATHEMATICAE, 2013, 127 (01) : 193 - 215
  • [34] LACUNARY FRACTIONAL BROWNIAN MOTION
    Clausel, Marianne
    ESAIM-PROBABILITY AND STATISTICS, 2012, 16 : 352 - 374
  • [35] Tempered fractional Brownian motion
    Meerschaert, Mark M.
    Sabzikar, Farzad
    STATISTICS & PROBABILITY LETTERS, 2013, 83 (10) : 2269 - 2275
  • [36] Oscillatory Fractional Brownian Motion
    T. Bojdecki
    L. G. Gorostiza
    A. Talarczyk
    Acta Applicandae Mathematicae, 2013, 127 : 193 - 215
  • [37] Deconvolution of fractional Brownian motion
    Pipiras, V
    Taqqu, MS
    JOURNAL OF TIME SERIES ANALYSIS, 2002, 23 (04) : 487 - 501
  • [38] On the prediction of fractional Brownian motion
    Gripenberg, G
    Norros, I
    JOURNAL OF APPLIED PROBABILITY, 1996, 33 (02) : 400 - 410
  • [39] On simulating fractional Brownian motion
    Szulga, J
    Molz, F
    HIGH DIMENSIONAL PROBABILITY II, 2000, 47 : 377 - 387
  • [40] Approximations of fractional Brownian motion
    Li, Yuqiang
    Dai, Hongshuai
    BERNOULLI, 2011, 17 (04) : 1195 - 1216