Kernel spectral clustering for predicting maintenance of industrial machines

被引:0
|
作者
Langone, Rocco [1 ]
Alzate, Carlos [1 ,2 ]
De Ketelaere, Bart [2 ]
Suykens, Johan A. K. [1 ,3 ]
机构
[1] Katholieke Univ Leuven, SCD, Dept Elect Engn ESAT, B-3001 Louvain, Belgium
[2] Smarter Cities Technol Ctr, IBM Res, Dublin, Ireland
[3] BIOSYS, Fac Biosci Engn, Leuven, Belgium
关键词
PROCESS FAULT-DETECTION; QUANTITATIVE MODEL; DIAGNOSIS;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Early and accurate fault detection in modern industrial machines is crucial in order to minimize downtime, increase the safety of plant operations, and reduce manufacturing costs. The process monitoring techniques that have been most effective in practice are based on the analysis of historical process data. In this paper we present a novel approach that uses Kernel Spectral Clustering (KSC) on the sensor data to distinguish between normal operating condition and abnormal situations. In other words, the main contribution is to show how KSC can be a valid tool also for outlier detection, a field where other techniques are more popular. KSC is a state-of-the-art unsupervised learning technique with out-of-sample ability and a systematic model selection scheme. Thanks to the abovementioned characteristics and the capability of discovering complex clustering boundaries, KSC is able to detect in advance the need of maintenance actions in the analyzed machine.
引用
收藏
页码:39 / 45
页数:7
相关论文
共 50 条
  • [21] Kernel Spectral Clustering for dynamic data using Multiple Kernel Learning
    Peluffo-Ordonez, D.
    Garcia-Vega, S.
    Langone, R.
    Suykens, J. A. K.
    Castellanos-Dominguez, G.
    [J]. 2013 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2013,
  • [22] Clustering data over time using kernel spectral clustering with memory
    Langone, Rocco
    Mall, Raghvendra
    Suykens, Johan A. K.
    [J]. 2014 IEEE SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE AND DATA MINING (CIDM), 2014, : 1 - 8
  • [23] A Kernel Clustering Algorithm for Fast Training of Support Vector Machines
    刘笑嶂
    冯国灿
    [J]. Journal of Donghua University(English Edition), 2011, 28 (01) : 53 - 56
  • [24] Spectral clustering with adaptive similarity measure in Kernel space
    Ye, Xiucai
    Sakurai, Tetsuya
    [J]. INTELLIGENT DATA ANALYSIS, 2018, 22 (04) : 751 - 765
  • [25] Different perspectives for kernel spectral clustering: A theoretical study
    Peluffo, Diego H. O.
    Rosero, Paul D. M.
    Pupiales, Carlos H. Y.
    Suarez, Luis E. Z.
    Jaramillo, Edgar D., V
    Maya, Edgar A. O.
    Michilena, Jaime R. C.
    Vasquez, Carlos A. A.
    [J]. 2016 IEEE ECUADOR TECHNICAL CHAPTERS MEETING (ETCM), 2016,
  • [26] Efficient Multiple Kernel Clustering via Spectral Perturbation
    Tang, Chang
    Li, Zhenglai
    Yan, Weiqing
    Yue, Guanghui
    Zhang, Wei
    [J]. PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2022, 2022, : 1603 - 1611
  • [27] Optimal Reduced Sets for Sparse Kernel Spectral Clustering
    Mall, Raghvendra
    Mehrkanoon, Siamak
    Langone, Rocco
    Suykens, Johan A. K.
    [J]. PROCEEDINGS OF THE 2014 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2014, : 2436 - 2443
  • [28] Unpaired Multi-View Kernel Spectral Clustering
    Houthuys, Lynn
    Suykens, Johan A. K.
    [J]. 2017 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (SSCI), 2017, : 1307 - 1313
  • [29] Kernel spectral clustering for community detection in complex networks
    Langone, Rocco
    Alzate, Carlos
    Suykens, Johan A. K.
    [J]. 2012 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2012,
  • [30] Out-of-Sample Eigenvectors in Kernel Spectral Clustering
    Alzate, Carlos
    Suykens, Johan A. K.
    [J]. 2011 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2011, : 2349 - 2356