Multi-instance learning from supervised view

被引:27
|
作者
Zhou, Zhi-Hua [1 ]
机构
[1] Nanjing Univ, Natl Lab Novel Software Technol, Nanjing 210093, Peoples R China
关键词
machine learning; multi-instance learning; supervised learning; ensemble learning; multi-instance ensemble;
D O I
10.1007/s11390-006-0800-7
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
In multi-instance learning, the training set comprises labeled bags that are composed of unlabeled instances, and the task is to predict the labels of unseen bags. This paper studies multi-instance learning from the view of supervised learning. First, by analyzing some representative learning algorithms, this paper shows that multi-instance learners can be derived from supervised learners by shifting their focuses from the discrimination on the instances to the discrimination on the bags. Second, considering that ensemble learning paradigms can effectively enhance supervised learners, this paper proposes to build multi-instance ensembles to solve multi-instance problems. Experiments on a real-world benchmark test show that ensemble learning paradigms can significantly enhance multi-instance learners.
引用
收藏
页码:800 / 809
页数:10
相关论文
共 50 条
  • [31] Multi-typed Objects Multi-view Multi-instance Multi-label Learning
    Yang, Yuanlin
    Yu, Guoxian
    Wang, Jun
    Domeniconi, Carlotta
    Zhang, Xiangliang
    20TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM 2020), 2020, : 1370 - 1375
  • [32] Learnability of multi-instance multi-label learning
    Wang Wei
    Zhou ZhiHua
    CHINESE SCIENCE BULLETIN, 2012, 57 (19): : 2488 - 2491
  • [33] Multi-instance learning based on representative instance and feature mapping
    Wang, Xingqi
    Wei, Dan
    Cheng, Hui
    Fang, Jinglong
    NEUROCOMPUTING, 2016, 216 : 790 - 796
  • [34] Multi-peak Graph-based Multi-instance Learning for Weakly Supervised Object Detection
    Ji, Ruyi
    Liu, Zeyu
    Zhang, Libo
    Liu, Jianwei
    Zuo, Xin
    Wu, Yanjun
    Zhao, Chen
    Wang, Haofeng
    Yang, Lin
    ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS, 2021, 17 (02)
  • [35] Multi-instance Learning based on Instance Consistency for Image Retrieval
    Zhang, Miao
    Wu, Zhize
    Wan, Shouhong
    Yue, Lihua
    Yin, Bangjie
    NINTH INTERNATIONAL CONFERENCE ON DIGITAL IMAGE PROCESSING (ICDIP 2017), 2017, 10420
  • [36] Instance-Level Label Propagation with Multi-Instance Learning
    Wang, Qifan
    Chechik, Gal
    Sun, Chen
    Shen, Bin
    PROCEEDINGS OF THE TWENTY-SIXTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2017, : 2943 - 2949
  • [37] Multi-View Multi-Instance Multi-Label Learning Based on Collaborative Matrix Factorization
    Xing, Yuying
    Yu, Guoxian
    Domeniconi, Carlotta
    Wang, Jun
    Zhang, Zili
    Guo, Maozu
    THIRTY-THIRD AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FIRST INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / NINTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2019, : 5508 - 5515
  • [38] Instance Explainable Multi-instance Learning for ROI of Various Data
    Zhao, Xu
    Wang, Zihao
    Zhang, Yong
    Xing, Chunxiao
    DATABASE SYSTEMS FOR ADVANCED APPLICATIONS (DASFAA 2020), PT II, 2020, 12113 : 107 - 124
  • [39] Learnability of multi-instance multi-label learning
    WANG Wei & ZHOU ZhiHua National Key Laboratory for Novel Software Technology
    Science Bulletin, 2012, 57 (19) : 2492 - 2495
  • [40] Not-so-supervised: A survey of semi-supervised, multi-instance, and transfer learning in medical image analysis
    Cheplygina, Veronika
    de Bruijne, Marleen
    Pluim, Josien P. W.
    MEDICAL IMAGE ANALYSIS, 2019, 54 : 280 - 296