Optical coherence tomography system mass-producible on a silicon photonic chip

被引:54
|
作者
Schneider, Simon [1 ]
Lauermann, Matthias [1 ]
Dietrich, Philipp-Immanuel [1 ,2 ]
Weimann, Claudius [1 ]
Freude, Wolfgang [1 ,2 ]
Koos, Christian [1 ,2 ]
机构
[1] Karlsruhe Inst Technol, Inst Photon & Quantum Elect IPQ, Engesserstr 5, D-76131 Karlsruhe, Germany
[2] Karlsruhe Inst Technol, IMT, Hermann von Helmholtz Pl 1, D-76344 Eggenstein Leopoldshafen, Germany
来源
OPTICS EXPRESS | 2016年 / 24卷 / 02期
基金
欧洲研究理事会;
关键词
SWEPT-SOURCE; VISUALIZATION; INTERFEROMETER; POLARIZATION;
D O I
10.1364/OE.24.001573
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Miniaturized integrated optical coherence tomography (OCT) systems have the potential to unlock a wide range of both medical and industrial applications. This applies in particular to multi-channel OCT schemes, where scalability and low cost per channel are important, to endoscopic implementations with stringent size demands, and to mechanically robust units for industrial applications. We demonstrate that fully integrated OCT systems can be realized using the state-of-the-art silicon photonic device portfolio. We present two different implementations integrated on a silicon-on-insulator (SOI) photonic chip, one with an integrated reference path (OCTint) for imaging objects in distances of 5 mm to 10 mm from the chip edge, and another one with an external reference path (OCText) for use with conventional scan heads. Both OCT systems use integrated photodiodes and an external swept-frequency source. In our proof-of-concept experiments, we achieve a sensitivity of -64 dB (-53 dB for OCTint) and a dynamic range of 60 dB (53 dB for OCTint). The viability of the concept is demonstrated by imaging of biological and technical objects. (C) 2016 Optical Society of America
引用
收藏
页码:1573 / 1586
页数:14
相关论文
共 50 条
  • [1] Silicon Photonic Optical Coherence Tomography System
    Schneider, S.
    Lauermann, M.
    Weimann, C.
    Freude, W.
    Koos, C.
    [J]. 2014 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2014,
  • [2] Development of a mass-producible on-chip plasmonic nanohole array biosensor
    Nakamoto, Kohei
    Kurita, Ryoji
    Niwa, Osamu
    Fujii, Toshiyuki
    Nishida, Munehiro
    [J]. NANOSCALE, 2011, 3 (12) : 5067 - 5075
  • [3] Mass-producible monolithic silicon probes for scanning probe microscopes
    Liu, C
    Gamble, R
    [J]. SENSORS AND ACTUATORS A-PHYSICAL, 1998, 71 (03) : 233 - 237
  • [4] Mass-producible monolithic silicon probes for Scanning Probe Microscopes
    Liu, C
    [J]. WHERE INSTRUMENTATION IS GOING - CONFERENCE PROCEEDINGS, VOLS 1 AND 2, 1998, : 1381 - 1384
  • [6] SAW-based fluid atomization using mass-producible chip devices
    Winkler, A.
    Harazim, S. M.
    Menzel, S. B.
    Schmidt, H.
    [J]. LAB ON A CHIP, 2015, 15 (18) : 3793 - 3799
  • [7] Silicon Photonic Integrated Circuits for Optical Coherence Tomography
    Freude, W.
    Schneider, S.
    Lauermann, M.
    Dietrich, P. -I.
    Weimann, C.
    Koos, C.
    [J]. 2016 18TH INTERNATIONAL CONFERENCE ON TRANSPARENT OPTICAL NETWORKS (ICTON), 2016,
  • [8] Multiplexed detection of biomarkers using a microfluidic chip integrated with mass-producible micropillar array electrodes
    Chen, Chaozhan
    Ran, Bin
    Liu, Bo
    Liu, Xiaoxuan
    Zhang, Ziteng
    Li, Yan
    Li, Hongchun
    Lan, Minbo
    Zhu, Yonggang
    [J]. ANALYTICA CHIMICA ACTA, 2023, 1272
  • [9] Parameter Extraction of Silicon Photonic Devices Using Optical Coherence Tomography
    Shalaby, Rabab A.
    Sabry, Yasser M.
    Khalil, Diaa
    [J]. INTEGRATED PHOTONICS PLATFORMS: FUNDAMENTAL RESEARCH, MANUFACTURING AND APPLICATIONS, 2020, 11364
  • [10] Miniature spectrometer and beam splitter for an optical coherence tomography on a silicon chip
    Akca, B. I.
    Povazay, B.
    Alex, A.
    Woerhoff, K.
    de Ridder, R. M.
    Drexler, W.
    Pollnau, M.
    [J]. OPTICS EXPRESS, 2013, 21 (14): : 16648 - 16656