Simpler free-energy functional of the Debye-Huckel model of fluids and the nonuniqueness of free-energy functionals in the theory of fluids

被引:3
|
作者
Piron, R. [1 ]
Blenski, T. [2 ]
机构
[1] CEA, DAM, DIF, F-91297 Arpajon, France
[2] Univ Paris Saclay, Lab Interact Dynam & Lasers, Ctr Etud Saclay, UMR 9222,CEA,CNRS, F-91191 Gif Sur Yvette, France
关键词
EQUATION-OF-STATE; VARIATIONAL AVERAGE-ATOM; PERTURBATION CORRECTION; PLASMAS;
D O I
10.1103/PhysRevE.99.052134
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
In previous publications [Piron and Blenski, Phys. Rev. E 94, 062128 (2016); Blenski and Piron, High Energy Density Phys. 24, 28 (2017)], the authors have proposed Debye-Htickel-approximate free-energy functionals of the pair distribution functions for one-component fluids and two-component plasmas. These functionals yield the corresponding Debye-Huckel integral equations when they are minimized with respect to the pair distribution functions, lead to correct thermodynamic relations, and fulfill the virial theorem. In the present paper, we update our results by providing simpler functionals that have the same properties. We relate these functionals to the approaches of Lado [Phys. Rev. A 8, 2548 (1973)] and of Olivares and McQuarrie [J. Chem. Phys. 65, 3604 (1976)]. We also discuss briefly the nonuniqueness issue that is raised by these results.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Molecular Debye-Huckel theory approach to solvation dynamics in ionic fluids
    Song, Xueyu
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2014, 248
  • [42] HELMHOLTZ FREE-ENERGY FOR 2-DIMENSIONAL LENNARD-JONES FLUIDS
    CUADROS, F
    MULERO, A
    [J]. CHEMICAL PHYSICS, 1993, 177 (01) : 53 - 60
  • [43] FREE-ENERGY FOR EVER
    OGDEN, F
    [J]. ELECTRONICS WORLD & WIRELESS WORLD, 1991, 97 (1659): : 10 - &
  • [44] FREE-ENERGY OF ELECTRETS
    DREYFUS, G
    LEWINER, J
    [J]. PHYSICAL REVIEW B, 1976, 14 (12): : 5451 - 5457
  • [45] FREE-ENERGY OF A NONLINEAR LATTICE MODEL
    FROSCH, H
    BUTTNER, H
    [J]. JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1985, 18 (34): : 6303 - 6309
  • [46] THE FREE-ENERGY OF THE POTTS-MODEL
    BHATTACHARYA, T
    LACAZE, R
    MOREL, A
    [J]. NUCLEAR PHYSICS B, 1994, : 671 - 673
  • [47] A FREE-ENERGY BOUND FOR THE HOPFIELD MODEL
    KOCH, H
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1993, 26 (06): : L353 - L355
  • [48] FLUCTUATION OF THE FREE-ENERGY IN THE HOPFIELD MODEL
    SCACCIATELLI, E
    TIROZZI, B
    [J]. JOURNAL OF STATISTICAL PHYSICS, 1992, 67 (5-6) : 981 - 1008
  • [49] THE FREE-ENERGY DENSITY
    LOVETT, R
    BAUS, M
    [J]. PHYSICA A, 1993, 196 (03): : 368 - 374
  • [50] Free-energy and the brain
    Karl J. Friston
    Klaas E. Stephan
    [J]. Synthese, 2007, 159 : 417 - 458