Simpler free-energy functional of the Debye-Huckel model of fluids and the nonuniqueness of free-energy functionals in the theory of fluids

被引:3
|
作者
Piron, R. [1 ]
Blenski, T. [2 ]
机构
[1] CEA, DAM, DIF, F-91297 Arpajon, France
[2] Univ Paris Saclay, Lab Interact Dynam & Lasers, Ctr Etud Saclay, UMR 9222,CEA,CNRS, F-91191 Gif Sur Yvette, France
关键词
EQUATION-OF-STATE; VARIATIONAL AVERAGE-ATOM; PERTURBATION CORRECTION; PLASMAS;
D O I
10.1103/PhysRevE.99.052134
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
In previous publications [Piron and Blenski, Phys. Rev. E 94, 062128 (2016); Blenski and Piron, High Energy Density Phys. 24, 28 (2017)], the authors have proposed Debye-Htickel-approximate free-energy functionals of the pair distribution functions for one-component fluids and two-component plasmas. These functionals yield the corresponding Debye-Huckel integral equations when they are minimized with respect to the pair distribution functions, lead to correct thermodynamic relations, and fulfill the virial theorem. In the present paper, we update our results by providing simpler functionals that have the same properties. We relate these functionals to the approaches of Lado [Phys. Rev. A 8, 2548 (1973)] and of Olivares and McQuarrie [J. Chem. Phys. 65, 3604 (1976)]. We also discuss briefly the nonuniqueness issue that is raised by these results.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Free-energy functional of the Debye-Huckel model of simple fluids
    Piron, R.
    Blenski, T.
    [J]. PHYSICAL REVIEW E, 2016, 94 (06)
  • [2] Free-energy functional of the Debye-Huckel model of two-component plasmas
    Blenski, T.
    Piron, R.
    [J]. HIGH ENERGY DENSITY PHYSICS, 2017, 24 : 28 - 32
  • [3] FREE-ENERGY THEORY OF INHOMOGENEOUS FLUIDS
    MCCOY, BF
    DAVIS, HT
    [J]. PHYSICAL REVIEW A, 1979, 20 (03) : 1201 - 1207
  • [4] A recipe for free-energy functionals of polarizable molecular fluids
    Sundararaman, Ravishankar
    Letchworth-Weaver, Kendra
    Arias, T. A.
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2014, 140 (14):
  • [5] FREE-ENERGY IN THE STATISTICAL-THEORY OF FLUIDS
    KISELYOV, OE
    MARTYNOV, GA
    [J]. JOURNAL OF CHEMICAL PHYSICS, 1990, 93 (03): : 1942 - 1947
  • [6] FREE-ENERGY OF STATISTICAL-THEORY OF FLUIDS
    KISELEV, OE
    MARTYNOV, GA
    [J]. DOKLADY AKADEMII NAUK SSSR, 1988, 303 (01): : 90 - 94
  • [7] FREE-ENERGY DENSITY FUNCTIONALS FOR NON-UNIFORM CLASSICAL FLUIDS
    ROBLEDO, A
    VAREA, C
    [J]. LECTURE NOTES IN PHYSICS, 1983, 187 : 287 - 301
  • [8] ON THE EXISTENCE OF FREE-ENERGY DENSITIES IN NONUNIFORM FLUIDS
    LOVETT, R
    BAUS, M
    [J]. PHYSICA A, 1992, 181 (3-4): : 309 - 328
  • [9] FREE-ENERGY MODELS FOR NONUNIFORM CLASSICAL FLUIDS
    PERCUS, JK
    [J]. JOURNAL OF STATISTICAL PHYSICS, 1988, 52 (5-6) : 1157 - 1178
  • [10] Fast Calculation of Electrostatic Solvation Free Energy in Simple Ionic Fluids Using an Energy-Scaled Debye-Huckel Theory
    Xiao, Tiejun
    Zhou, Yun
    [J]. JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2021, 12 (27): : 6262 - 6268