K2CO3-Modified Potassium Feldspar for CO2 Capture from Post-combustion Flue Gas

被引:11
|
作者
Guo, Yafei [1 ]
Li, Changhai [1 ]
Lu, Shouxiang [1 ]
Zhao, Chuanwen [2 ]
机构
[1] Univ Sci & Technol China, State Key Lab Fire Sci, Hefei 230026, Anhui, Peoples R China
[2] Nanjing Normal Univ, Sch Energy & Mech Engn, Jiangsu Prov Key Lab Mat Cycling & Pollut Control, Nanjing 210042, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
CARBON-DIOXIDE CAPTURE; SOL-GEL PROCESS; LOW-TEMPERATURE; HYDROTALCITE; ADSORPTION; ADSORBENT; SORBENTS; MINERALIZATION; PERFORMANCE; NANOTUBES;
D O I
10.1021/acs.energyfuels.5b02207
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Capturing CO2 from post-combustion flue gas is one of the major solutions to CO2 abatement in global warming and climate change. Potassium-based solid sorbents are confirmed as promising means for this purpose. To dispose of the substantive flue gas, the CO2 capture process should be cost-effective. In this work, a novel K2CO3/PF sorbent was prepared by impregnation of potassium carbonate (K2CO3) on potassium feldspar (PP). The synthesized sample was characterized by X-ray fluorescence (XRF), field emission scanning electron microscopy (FESEM), and X-ray diffraction (XRD). The CO2 sorption behaviors of K2CO3/PF were evaluated in a fixed-bed reactor in simulated flue gas composition of 60 degrees C, 5% CO2, and 10% H2O. The sorbent regeneration behaviors were also investigated in a N-2 atmosphere at 550 degrees C with a ramping rate of 10 degrees C/min. Further insights were focused on the reaction pathway and multiple cycle behaviors of the sorbent in 10 CO2 sorption desorption tests. The CO2 sorption capacity of K2CO3/PF is calculated as 1.74 mmol of CO2/g. The reaction pathways are revealed as that NaAlSi(3)0(8) and KAlSi3O8 in the support can be converted into NaAlCO3(OH)(2), Al-2(Si2O8)(OH)(4), NaHCO3, and KHCO3 in a humid CO2 atmosphere. The carbonation reaction of K2CO3 to form KHCO3 also contributes considerably to the whole CO2 sorption process. The sorbent regeneration process consists of three steps as the desorption of adsorbed CO2 at 55 degrees C, the decompositions of NaHCO3 and KHCO3 at 130 degrees C, and the decompositions of NaAlCO3(OH)(2) and Al-2(Si2O8)(OH)(4) at 550 degrees C. Besides, the desired sorbent presents excellent regenerability and stability during 10 cyclic CO2 sorption desorption tests. Considering the high CO2 working capacity, long-term stability, low cost of the supporting materials, and recycling of waste resources, K2CO3/PF can be considered as a new option for flue gas treatment.
引用
收藏
页码:8151 / 8156
页数:6
相关论文
共 50 条
  • [31] Integration of post-combustion CO2 capture with aluminium production
    Mathisen, Anette
    Ariyarathna, Sanoja
    Eldrup, Nils
    Muller, Gunn-Iren
    Melaaen, Morten
    [J]. 12TH INTERNATIONAL CONFERENCE ON GREENHOUSE GAS CONTROL TECHNOLOGIES, GHGT-12, 2014, 63 : 6602 - 6610
  • [32] Corrosion in CO2 Post-Combustion Capture with Alkanolamines - A Review
    Kittel, J.
    Gonzalez, S.
    [J]. OIL & GAS SCIENCE AND TECHNOLOGY-REVUE D IFP ENERGIES NOUVELLES, 2014, 69 (05): : 915 - 929
  • [33] Study of novel solvent for CO2 post-combustion capture
    Hadri, Nabil E. L.
    Dang Viet Quang
    Abu-Zahra, Mohammad R. M.
    [J]. CLEAN, EFFICIENT AND AFFORDABLE ENERGY FOR A SUSTAINABLE FUTURE, 2015, 75 : 2268 - 2286
  • [34] Exergoeconomic Analysis of Post-Combustion CO2 Capture Processes
    Schach, M. -O.
    Schneider, R.
    Schramm, H.
    Repke, J. -U.
    [J]. 20TH EUROPEAN SYMPOSIUM ON COMPUTER AIDED PROCESS ENGINEERING, 2010, 28 : 997 - 1002
  • [35] Sensor placement for post-combustion CO2 capture plants
    Liu, Siyu
    Yin, Xunyuan
    Liu, Jinfeng
    [J]. 2023 AMERICAN CONTROL CONFERENCE, ACC, 2023, : 3454 - 3459
  • [36] Numerical Evaluation of CO2 Capture on Post-combustion Processes
    Chavez, Rosa-Hilda
    Guadarrama, Javier J.
    [J]. PRES15: PROCESS INTEGRATION, MODELLING AND OPTIMISATION FOR ENERGY SAVING AND POLLUTION REDUCTION, 2015, 45 : 271 - 276
  • [37] Ionic liquids as an alternative to CO2 post-combustion capture
    Gimeno, M. P.
    Mayoral, M. C.
    Andres, J. M.
    [J]. BOLETIN DEL GRUPO ESPANOL DEL CARBON, 2013, (30): : 2 - 5
  • [38] Capacity and kinetics of solvents for post-combustion CO2 capture
    Bruder, Peter
    Svendsen, Hallvard F.
    [J]. 6TH TRONDHEIM CONFERENCE ON CO2 CAPTURE, TRANSPORT AND STORAGE, 2012, 23 : 45 - 54
  • [39] Modeling post-combustion CO2 capture with amine solvents
    Leonard, Gregoire
    Heyen, Georges
    [J]. 21ST EUROPEAN SYMPOSIUM ON COMPUTER AIDED PROCESS ENGINEERING, 2011, 29 : 1768 - 1772
  • [40] Assessment of Membrane Performance for Post-Combustion CO2 Capture
    Liu, Liang
    Lee, Jung Hyun
    Han, Sang Hoon
    Ha, Seong Yong
    Chen, George Q.
    Kentish, Sandra E.
    Yeo, Jeong-Gu
    [J]. INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2022, 61 (01) : 777 - 785