MSA: Jointly Detecting Drug Name and Adverse Drug Reaction Mentioning Tweets with Multi-Head Self-Attention

被引:5
|
作者
Wu, Chuhan [1 ]
Wu, Fangzhao [2 ]
Yuan, Zhigang [1 ]
Liu, Junxin [1 ]
Huang, Yongfeng [1 ]
Xie, Xing [2 ]
机构
[1] Tsinghua Univ, Elect Engn, Beijing, Peoples R China
[2] Microsoft Res Asia, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
Twitter; Drug Name; Adverse Drug Reaction; Self-Attention; SOCIAL MEDIA; PHARMACOVIGILANCE; CLASSIFICATION;
D O I
10.1145/3289600.3290980
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Twitter is a popular social media platform for information sharing and dissemination. Many Twitter users post tweets to share their experiences about drugs and adverse drug reactions. Automatic detection of tweets mentioning drug names and adverse drug reactions at a large scale has important applications such as pharmacovigilance. However, detecting drug name and adverse drug reaction mentioning tweets is very challenging, because tweets are usually very noisy and informal, and there are massive misspellings and user-created abbreviations for these mentions. In addition, these mentions are usually context dependent. In this paper, we propose a neural approach with hierarchical tweet representation and multi-head self-attention mechanism to jointly detect tweets mentioning drug names and adverse drug reactions. In order to alleviate the influence of massive misspellings and user-created abbreviations in tweets, we propose to use a hierarchical tweet representation model to first learn word representations from characters and then learn tweet representations from words. In addition, we propose to use multi-head self-attention mechanism to capture the interactions between words to fully model the contexts of tweets. Besides, we use additive attention mechanism to select the informative words to learn more informative tweet representations. Experimental results validate the effectiveness of our approach.
引用
收藏
页码:33 / 41
页数:9
相关论文
共 50 条
  • [41] Ship detection algorithm in complex backgrounds via multi-head self-attention
    Yu N.-J.
    Fan X.-B.
    Deng T.-M.
    Mao G.-T.
    Zhejiang Daxue Xuebao (Gongxue Ban)/Journal of Zhejiang University (Engineering Science), 2022, 56 (12): : 2392 - 2402
  • [42] Multi-Head Self-Attention Generative Adversarial Networks for Multiphysics Topology Optimization
    Parrott, Corey M.
    Abueidda, Diab W.
    James, Kai A.
    AIAA JOURNAL, 2023, 61 (02) : 726 - 738
  • [43] MSnet: Multi-Head Self-Attention Network for Distantly Supervised Relation Extraction
    Sun, Tingting
    Zhang, Chunhong
    Ji, Yang
    Hu, Zheng
    IEEE ACCESS, 2019, 7 : 54472 - 54482
  • [44] A Supervised Multi-Head Self-Attention Network for Nested Named Entity Recognition
    Xu, Yongxiu
    Huang, Heyan
    Feng, Chong
    Hu, Yue
    THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 35 : 14185 - 14193
  • [45] Feature weighting concatenated multi-head self-attention for amputee EMG classification
    Bilgin, Metin
    Mert, Ahmet
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2025, 103
  • [46] Multi-Head Self-Attention for 3D Point Cloud Classification
    Gao, Xue-Yao
    Wang, Yan-Zhao
    Zhang, Chun-Xiang
    Lu, Jia-Qi
    IEEE ACCESS, 2021, 9 : 18137 - 18147
  • [47] Learning Contextual Features with Multi-head Self-attention for Fake News Detection
    Wang, Yangqian
    Han, Hao
    Ding, Ye
    Wang, Xuan
    Liao, Qing
    COGNITIVE COMPUTING - ICCC 2019, 2019, 11518 : 132 - 142
  • [48] Deep Bug Triage Model Based on Multi-head Self-attention Mechanism
    Yu, Xu
    Wan, Fayang
    Tang, Bin
    Zhan, Dingjia
    Peng, Qinglong
    Yu, Miao
    Wang, Zhaozhe
    Cui, Shuang
    COMPUTER SUPPORTED COOPERATIVE WORK AND SOCIAL COMPUTING, CHINESECSCW 2021, PT II, 2022, 1492 : 107 - 119
  • [49] Multi-head Self-attention Recommendation Model based on Feature Interaction Enhancement
    Yin, Yunfei
    Huang, Caihao
    Sun, Jingqin
    Huang, Faliang
    IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC 2022), 2022, : 1740 - 1745
  • [50] Fast Neural Chinese Named Entity Recognition with Multi-head Self-attention
    Qi, Tao
    Wu, Chuhan
    Wu, Fangzhao
    Ge, Suyu
    Liu, Junxin
    Huang, Yongfeng
    Xie, Xing
    KNOWLEDGE GRAPH AND SEMANTIC COMPUTING: KNOWLEDGE COMPUTING AND LANGUAGE UNDERSTANDING, 2019, 1134 : 98 - 110