hicGAN infers super resolution Hi-C data with generative adversarial networks

被引:49
|
作者
Liu, Qiao [1 ,2 ]
Lv, Hairong [1 ,2 ]
Jiang, Rui [1 ,2 ]
机构
[1] Tsinghua Univ, Minist Educ, Key Lab Bioinformat, Bioinformat Div, Beijing 100084, Peoples R China
[2] Tsinghua Univ, Ctr Synthet & Syst Biol, Beijing Natl Res Ctr Informat Sci & Technol, Dept Automat, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
CHROMATIN ACCESSIBILITY PREDICTION; ORGANIZATION; PRINCIPLES; GENOME; ELEMENTS; DOMAINS; MAP; DNA;
D O I
10.1093/bioinformatics/btz317
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation Hi-C is a genome-wide technology for investigating 3D chromatin conformation by measuring physical contacts between pairs of genomic regions. The resolution of Hi-C data directly impacts the effectiveness and accuracy of downstream analysis such as identifying topologically associating domains (TADs) and meaningful chromatin loops. High resolution Hi-C data are valuable resources which implicate the relationship between 3D genome conformation and function, especially linking distal regulatory elements to their target genes. However, high resolution Hi-C data across various tissues and cell types are not always available due to the high sequencing cost. It is therefore indispensable to develop computational approaches for enhancing the resolution of Hi-C data. Results We proposed hicGAN, an open-sourced framework, for inferring high resolution Hi-C data from low resolution Hi-C data with generative adversarial networks (GANs). To the best of our knowledge, this is the first study to apply GANs to 3D genome analysis. We demonstrate that hicGAN effectively enhances the resolution of low resolution Hi-C data by generating matrices that are highly consistent with the original high resolution Hi-C matrices. A typical scenario of usage for our approach is to enhance low resolution Hi-C data in new cell types, especially where the high resolution Hi-C data are not available. Our study not only presents a novel approach for enhancing Hi-C data resolution, but also provides fascinating insights into disclosing complex mechanism underlying the formation of chromatin contacts. Availability and implementation We release hicGAN as an open-sourced software at https://github.com/kimmo1019/hicGAN. Supplementary information Supplementary data are available at Bioinformatics online.
引用
下载
收藏
页码:I99 / I107
页数:9
相关论文
共 50 条
  • [21] ESRGAN: Enhanced Super-Resolution Generative Adversarial Networks
    Wang, Xintao
    Yu, Ke
    Wu, Shixiang
    Gu, Jinjin
    Liu, Yihao
    Dong, Chao
    Qiao, Yu
    Loy, Chen Change
    COMPUTER VISION - ECCV 2018 WORKSHOPS, PT V, 2019, 11133 : 63 - 79
  • [22] HiCTF:A Transformer Model for Enhancing Hi-C Data Resolution
    Zhao, Xuemin
    Duan, Ran
    Yao, Shaowen
    2023 10TH INTERNATIONAL CONFERENCE ON BIOMEDICAL AND BIOINFORMATICS ENGINEERING, ICBBE 2023, 2023, : 80 - 85
  • [23] Positron Image Super-Resolution Using Generative Adversarial Networks
    Xiong, Fang
    Liu, Jian
    Zhao, Min
    Yao, Min
    Guo, Ruipeng
    IEEE ACCESS, 2021, 9 : 121329 - 121343
  • [24] Scalable image generation and super resolution using generative adversarial networks
    Turhan, Ceren Guzel
    Bilge, Hasan Sakir
    JOURNAL OF THE FACULTY OF ENGINEERING AND ARCHITECTURE OF GAZI UNIVERSITY, 2020, 35 (02): : 953 - 966
  • [25] PET image super-resolution using generative adversarial networks
    Song, Tzu-An
    Chowdhury, Samadrita Roy
    Yang, Fan
    Dutta, Joyita
    NEURAL NETWORKS, 2020, 125 : 83 - 91
  • [26] RankSRGAN: Generative Adversarial Networks with Ranker for Image Super-Resolution
    Zhang, Wenlong
    Liu, Yihao
    Dong, Chao
    Qiao, Yu
    2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 3096 - 3105
  • [27] Enhanced Image Super Resolution Using ResNet Generative Adversarial Networks
    Samreen, Shirina
    Venu, Vasantha Sandhya
    TRAITEMENT DU SIGNAL, 2024, 41 (04) : 2035 - 2046
  • [28] Generative adversarial networks for hyperspectral image spatial super-resolution
    Jiang Yilin
    Shao Ran
    Tang Sanqiang
    The Journal of China Universities of Posts and Telecommunications, 2020, 27 (04) : 8 - 16
  • [29] ID Preserving Face Super-Resolution Generative Adversarial Networks
    Li, Jinning
    Zhou, Yichen
    Ding, Jie
    Chen, Cen
    Yang, Xulei
    IEEE ACCESS, 2020, 8 : 138373 - 138381
  • [30] DPSRGAN: Dilation Patch Super-Resolution Generative Adversarial Networks
    Mirchandani, Kapil
    Chordiya, Kushal
    2021 6TH INTERNATIONAL CONFERENCE FOR CONVERGENCE IN TECHNOLOGY (I2CT), 2021,