On the Singular Scheme of Split Foliations

被引:0
|
作者
Correa, Mauricio, Jr. [1 ]
Jardim, Marcos [2 ]
Martins, Renato Vidal [1 ]
机构
[1] ICEx UFMG, Dept Matemat, BR-30123970 Belo Horizonte, MG, Brazil
[2] IMECC UNICAMP, BR-13083859 Campinas, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
Holomorphic foliations; reflexive sheaves; split vector bundles; HOLOMORPHIC FOLIATIONS; BUCHSBAUM SUBVARIETIES; IRREDUCIBLE COMPONENTS; CODIMENSION-2; BUNDLES; SPACE;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that the tangent sheaf of a codimension-one locally free distribution splits as a sum of line bundles if and only if its singular scheme is arithmetically Cohen-Macaulay. In addition, we show that a foliation by curves is given by an intersection of generically transversal holomorphic distributions of codimension one if and only if its singular scheme is arithmetically Buchsbaum. Finally, we establish that these foliations are determined by their singular schemes, and deduce that the Hilbert scheme of certain arithmetically Buchsbaum schemes of codimension 2 is birational to a Grassmannian.
引用
收藏
页码:1359 / 1381
页数:23
相关论文
共 50 条
  • [1] ON THE SINGULAR SCHEME OF CODIMENSION ONE HOLOMORPHIC FOLIATIONS IN P3
    Giraldo, Luis
    Pan-Collantes, Antonio J.
    [J]. INTERNATIONAL JOURNAL OF MATHEMATICS, 2010, 21 (07) : 843 - 858
  • [2] SINGULAR PERTURBATIONS IN FOLIATIONS
    IKEGAMI, G
    [J]. INVENTIONES MATHEMATICAE, 1989, 95 (02) : 215 - 246
  • [3] Topology of Singular Foliations
    Narmanov A.
    [J]. Journal of Mathematical Sciences, 2023, 277 (3) : 439 - 445
  • [4] On symmetries of singular foliations
    Louis, Ruben
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2023, 189
  • [5] HOLONOMY OF SINGULAR FOLIATIONS
    DAZORD, P
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1984, 298 (02): : 27 - 30
  • [6] Laplacians and Spectrum for Singular Foliations
    Iakovos ANDROULIDAKIS
    [J]. Chinese Annals of Mathematics,Series B, 2014, 35 (05) : 679 - 690
  • [7] Laplacians and spectrum for singular foliations
    Iakovos Androulidakis
    [J]. Chinese Annals of Mathematics, Series B, 2014, 35 : 679 - 690
  • [8] Holonomy transformations for singular foliations
    Androulidakis, Iakovos
    Zambon, Marco
    [J]. ADVANCES IN MATHEMATICS, 2014, 256 : 348 - 397
  • [9] Foliations singular along a curve
    Vainsencher, Israel
    Kleiman, Steven L.
    [J]. TRANSACTIONS OF THE LONDON MATHEMATICAL SOCIETY, 2015, 2 (01): : 80 - 92
  • [10] JACOBIAN CURVE OF SINGULAR FOLIATIONS
    Corral, Nuria
    [J]. arXiv, 2021,