Laplacians and Spectrum for Singular Foliations

被引:0
|
作者
Iakovos ANDROULIDAKIS [1 ]
机构
[1] National and Kapodistrian University of Athens, Department of Mathematics, Panepistimiopolis, GR15784 Athens, Greece
关键词
Laplacian; Singular foliation; Holonomy;
D O I
暂无
中图分类号
O177 [泛函分析];
学科分类号
070104 ;
摘要
The author surveys Connes’ results on the longitudinal Laplace operator along a(regular) foliation and its spectrum, and discusses their generalization to any singular foliation on a compact manifold. Namely, it is proved that the Laplacian of a singular foliation is an essentially self-adjoint operator(unbounded) and has the same spectrum in every(faithful) representation, in particular, in L2 of the manifold and L2 of a leaf.The author also discusses briefly the relation of the Baum-Connes assembly map with the calculation of the spectrum.
引用
收藏
页码:679 / 690
页数:12
相关论文
共 50 条
  • [1] Laplacians and spectrum for singular foliations
    Iakovos Androulidakis
    [J]. Chinese Annals of Mathematics, Series B, 2014, 35 : 679 - 690
  • [2] Laplacians and Spectrum for Singular Foliations
    Androulidakis, Iakovos
    [J]. CHINESE ANNALS OF MATHEMATICS SERIES B, 2014, 35 (05) : 679 - 690
  • [3] THE ESSENTIAL SPECTRUM OF NEUMANN LAPLACIANS ON SOME BOUNDED SINGULAR DOMAINS
    HEMPEL, R
    SECO, LA
    SIMON, B
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 1991, 102 (02) : 448 - 483
  • [4] SINGULAR PERTURBATIONS IN FOLIATIONS
    IKEGAMI, G
    [J]. INVENTIONES MATHEMATICAE, 1989, 95 (02) : 215 - 246
  • [5] Topology of Singular Foliations
    Narmanov A.
    [J]. Journal of Mathematical Sciences, 2023, 277 (3) : 439 - 445
  • [6] On symmetries of singular foliations
    Louis, Ruben
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2023, 189
  • [7] HOLONOMY OF SINGULAR FOLIATIONS
    DAZORD, P
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1984, 298 (02): : 27 - 30
  • [8] Holonomy transformations for singular foliations
    Androulidakis, Iakovos
    Zambon, Marco
    [J]. ADVANCES IN MATHEMATICS, 2014, 256 : 348 - 397
  • [9] Foliations singular along a curve
    Vainsencher, Israel
    Kleiman, Steven L.
    [J]. TRANSACTIONS OF THE LONDON MATHEMATICAL SOCIETY, 2015, 2 (01): : 80 - 92
  • [10] On the Singular Scheme of Split Foliations
    Correa, Mauricio, Jr.
    Jardim, Marcos
    Martins, Renato Vidal
    [J]. INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2015, 64 (05) : 1359 - 1381