Evaluation of different potassium salts as activators for hierarchically porous carbons and their applications in CO2 adsorption

被引:82
|
作者
Cui, Hongmin [1 ]
Xu, Jianguo [1 ]
Shi, Jinsong [1 ]
You, Shengyong [1 ]
Zhang, Chao [2 ,3 ]
Yan, Nanfu [1 ]
Liu, Yuewei [1 ]
Chen, Guihua [1 ]
机构
[1] Jiangxi Acad Sci, Inst Appl Chem, 7777 ChangDong Ave, Nanchang 330096, Jiangxi, Peoples R China
[2] Chinese Acad Sci, Changchun Inst Appl Chem, State Key Lab Electroanalyt Chem, Changchun 130022, Peoples R China
[3] Chinese Acad Sci, Changchun Inst Appl Chem, Lab Green Chem & Proc, Changchun 130022, Peoples R China
基金
中国国家自然科学基金;
关键词
CO2; adsorption; Nitrogen doping; Activation; Potassium salts; Porous carbon; ULTRAHIGH PORE VOLUME; HIGH-SURFACE-AREA; NANOPOROUS CARBONS; MESOPOROUS CARBON; LOW-TEMPERATURE; NITROGEN; CAPTURE; BIOMASS; CAPACITY; DIOXIDE;
D O I
10.1016/j.jcis.2020.09.022
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
KOH is one of the most widely used activators for the synthesis of highly porous carbon. However, the strong causticity of KOH could cause serious equipment damage and safety issues at high temperature. In the current work, we presented the synthesis of porous carbons with large surface area using four different potassium salts (CH3COOK, KHCO3, K2CO3, and K2C2O4 center dot H2O) as mild but effective activators. Hydrochar prepared from the hydrothermal carbonization of glucosamine hydrochloride was used as carbon precursor. The carbons exhibited specific surface area up to 2403 m(2)/g. In order to reveal the different influences of nitrogen doping and textural properties under low and high pressure conditions, CO2 adsorption was tested with pressure up to 20 bar. At 1 bar, ultramicropore was the most determinant factor. Nitrogen doping also showed important influences, especially on the CO2/N-2 selectivity. At 20 bar, the carbon activated by KHCO3 showed CO2 uptakes of 26.24 (0 degrees C) and 18.63 mmol/g (25 degrees C). The experiment results indicated that the uptake at 20 bar correlated with the total surface area and total porosity of the carbon, and no apparent effects from nitrogen doping were observed. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页码:40 / 49
页数:10
相关论文
共 50 条
  • [21] CO2 capture via porous carbons
    Tarkunde, Yash
    Li, Yilun
    Tour, James
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2016, 251
  • [22] CO2 adsorption in synthetic hard carbons
    Reichenauer, G.
    CHARACTERIZATION OF POROUS SOLIDS VII - PROCEEDINGS OF THE 7TH INTERNATIONAL SYMPOSIUM ON THE CHARACTERIZATION OF POROUS SOLIDS (COPS-VII), AIX-EN-PROVENCE, FRANCE, 26-28 MAY 2005, 2006, 160 : 351 - 356
  • [23] ADSORPTION OF CO2 ON SHIELDED ACTIVATED CARBONS
    KALMYKOVA, IA
    SOROKO, VE
    SELIVANOV, NT
    ZHDANOV, AA
    JOURNAL OF APPLIED CHEMISTRY OF THE USSR, 1987, 60 (09): : 1947 - 1949
  • [24] DYNAMIC ADSORPTION OF CO2 ON MICROPOROUS CARBONS
    MAHAJAN, OP
    MORISHITA, M
    WALKER, PL
    CARBON, 1969, 7 (06) : 716 - +
  • [25] CO2 adsorption by activated templated carbons
    Sevilla, Marta
    Fuertes, Antonio B.
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2012, 366 (01) : 147 - 154
  • [26] Fabrication of coconut shell-derived porous carbons for CO2 adsorption application
    Bai, Jiali
    Huang, Jiamei
    Yu, Qiyun
    Demir, Muslum
    Akgul, Eda
    Altay, Bilge Nazli
    Hu, Xin
    Wang, Linlin
    FRONTIERS OF CHEMICAL SCIENCE AND ENGINEERING, 2023, 17 (08) : 1122 - 1130
  • [27] Porous activated carbons derived from waste sugarcane bagasse for CO2 adsorption
    Guo, Yafei
    Tan, Chang
    Sun, Jian
    Li, Weiling
    Zhang, Jubing
    Zhao, Chuanwen
    CHEMICAL ENGINEERING JOURNAL, 2020, 381
  • [28] The direct carbonization of algae biomass to hierarchical porous carbons and CO2 adsorption properties
    Tian, Zhongwei
    Qiu, Yin
    Zhou, Jicheng
    Zhao, Xuebo
    Cai, Jinjun
    MATERIALS LETTERS, 2016, 180 : 162 - 165
  • [29] The effect of pore structure on the CO2 adsorption efficiency of polyamine impregnated porous carbons
    Gibson, J. A. Arran
    Gromov, Andrei V.
    Brandani, Stefano
    Campbell, Eleanor E. B.
    MICROPOROUS AND MESOPOROUS MATERIALS, 2015, 208 : 129 - 139
  • [30] Fabrication of coconut shell-derived porous carbons for CO2 adsorption application
    Jiali Bai
    Jiamei Huang
    Qiyun Yu
    Muslum Demir
    Eda Akgul
    Bilge Nazli Altay
    Xin Hu
    Linlin Wang
    Frontiers of Chemical Science and Engineering, 2023, 17 : 1122 - 1130