Machine Learning and Deep Learning in Chemical Health and Safety: A Systematic Review of Techniques and Applications

被引:87
|
作者
Jiao, Zeren [1 ]
Hu, Pingfan [1 ]
Xu, Hongfei [1 ]
Wang, Qingsheng [1 ]
机构
[1] Texas A&M Univ, Artie McFerrin Dept Chem Engn, Mary Kay OConnor Proc Safety Ctr, College Stn, TX 77843 USA
关键词
machine learning; deep learning; artificial intelligence; chemical health; process safety; CONVOLUTIONAL NEURAL-NETWORK; PROPERTY RELATIONSHIP MODELS; SKIN SENSITIZATION POTENCY; MINIMUM IGNITION ENERGY; SUPPORT VECTOR MACHINE; IN-SILICO PREDICTION; FAULT-DIAGNOSIS; DISPERSION PREDICTION; FLAMMABILITY LIMITS; RELATIONSHIP QSPR;
D O I
10.1021/acs.chas.0c00075
中图分类号
R1 [预防医学、卫生学];
学科分类号
1004 ; 120402 ;
摘要
Machine learning (ML) and deep learning (DL) are a subset of artificial intelligence (AI) that can automatically learn from data and can perform tasks such as predictions and decision-making. Interdisciplinary studies combining ML/DL with chemical health and safety have demonstrated their unparalleled advantages in identifying trend and prediction assistance, which can greatly save manpower, material resources, and financial resources. In this Review, commonly used ML/DL tools and concepts as well as popular ML/DL algorithms are introduced and discussed. More than 100 papers have been categorized and summarized to present the current development of ML/DL-based research in the area of chemical health and safety. In addition, the limitation of current studies and prospects of ML/DL-based study are also discussed. This Review can serve as useful guidance for researchers who are interested in implementing ML/DL into chemical health and safety research and for readers who try to learn more information about novel ML/DL techniques and applications.
引用
下载
收藏
页码:316 / 334
页数:19
相关论文
共 50 条
  • [41] Machine Learning Techniques for Structural Health Monitoring of Concrete Structures: A Systematic Review
    Padmapoorani, P.
    Senthilkumar, S.
    Mohanraj, R.
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY-TRANSACTIONS OF CIVIL ENGINEERING, 2023, 47 (04) : 1919 - 1931
  • [42] A systematic review on deep learning architectures and applications
    Khamparia, Aditya
    Singh, Karan Mehtab
    EXPERT SYSTEMS, 2019, 36 (03)
  • [43] Artificial intelligence, machine learning, and deep learning in rhinology: a systematic review
    Antonio Mario Bulfamante
    Francesco Ferella
    Austin Michael Miller
    Cecilia Rosso
    Carlotta Pipolo
    Emanuela Fuccillo
    Giovanni Felisati
    Alberto Maria Saibene
    European Archives of Oto-Rhino-Laryngology, 2023, 280 : 529 - 542
  • [44] Artificial intelligence, machine learning, and deep learning in rhinology: a systematic review
    Bulfamante, Antonio Mario
    Ferella, Francesco
    Miller, Austin Michael
    Rosso, Cecilia
    Pipolo, Carlotta
    Fuccillo, Emanuela
    Felisati, Giovanni
    Saibene, Alberto Maria
    EUROPEAN ARCHIVES OF OTO-RHINO-LARYNGOLOGY, 2023, 280 (02) : 529 - 542
  • [45] Systematic Review of Deep Learning and Machine Learning Models in Biofuels Research
    Ardabili, Sina
    Mosavi, Amir
    Varkonyi-Koczy, Annamaria R.
    ENGINEERING FOR SUSTAINABLE FUTURE, 2020, 101 : 19 - 32
  • [46] A Review Paper on Machine Learning Techniques and Its Applications in Health Care Sector
    Gautam, Priya
    Dehraj, Pooja
    UBIQUITOUS INTELLIGENT SYSTEMS, 2022, 302 : 177 - 197
  • [47] Advances and applications of machine learning and deep learning in environmental ecology and health
    Cui, Shixuan
    Gao, Yuchen
    Huang, Yizhou
    Shen, Lilai
    Zhao, Qiming
    Pan, Yaru
    Zhuang, Shulin
    ENVIRONMENTAL POLLUTION, 2023, 335
  • [48] Evaluating online health information quality using machine learning and deep learning: A systematic literature review
    Baqraf, Yousef Khamis Ahmed
    Keikhosrokiani, Pantea
    Al-Rawashdeh, Manal
    DIGITAL HEALTH, 2023, 9
  • [49] An Exploration of Machine Learning and Deep Learning Techniques for Offensive Text Detection in Social Media-A Systematic Review
    Sharma, Geetanjali
    Brar, Gursimran Singh
    Singh, Pahuldeep
    Gupta, Nitish
    Kalra, Nidhi
    Parashar, Anshu
    INTERNATIONAL CONFERENCE ON INNOVATIVE COMPUTING AND COMMUNICATIONS, ICICC 2022, VOL 3, 2023, 492 : 541 - 559
  • [50] Software fault prediction using data mining, machine learning and deep learning techniques: A systematic literature review
    Batool, Iqra
    Khan, Tamim Ahmed
    COMPUTERS & ELECTRICAL ENGINEERING, 2022, 100