Universal properties of frustrated spin systems: 1/N-expansion and renormalization group approaches

被引:2
|
作者
Ignatenko, A. N. [1 ]
Irkhin, V. Yu [1 ]
Katanin, A. A. [1 ,2 ]
机构
[1] Inst Met Phys, Ekaterinburg 620041, Russia
[2] Max Planck Inst Festkorperforsch, D-70569 Stuttgart, Germany
关键词
Non-collinear magnetism; Frustration; Nonlinear sigma model; Triangular lattice; 1/N expansion; Renormalization group; 2-DIMENSIONAL HEISENBERG-ANTIFERROMAGNET; TRIANGULAR-LATTICE; CRITICAL-BEHAVIOR; PHASE-TRANSITION; MODEL; FERROMAGNETS; TEMPERATURE; EXPANSION; ORDER;
D O I
10.1016/j.nuclphysb.2009.01.004
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We consider a quantum two-dimensional O(N) circle times O(2)/O(N - 2) circle times O(2)(diag) nonlinear sigma model for frustrated spin systems and formulate its 1/N-expansion which involves fluctuating scalar and vector fields describing kinematic and dynamic interactions. respectively. The ground state phase diagram of this model is obtained within the 1/N-expansion and 2 + epsilon renormalization group approaches. The temperature dependence of correlation length ill the renormalized classical and quantum critical regimes is discussed. In the region rho(in) < rho(out), chi(in) < chi(out) of the symmetry broken ground state (rho(in,out) and chi(in,out) are the in- and out-of-plane spin stiffnesses and susceptibilities) the mass M-mu of the vector field call be arbitrarily small, and physical properties at finite temperatures are universal functions of rho(in,out), chi(in,out), and temperature T. For small enough M-mu these properties show a crossover from low- to high temperature regime at T similar to M-mu, In the region rho(in) > rho(out) or chi(in) > chi(out) finite-temperature properties are universal functions only at sufficiently large M-mu. The high-energy behaviour in the latter region is similar to the Landau-pole dependence of the physical charge e on the momentum Scale in quantum electrodynamics. with mass M-mu playing a role of e(-1). The application of the results obtained to the triangular-lattice Heisenberg antiferromagnet is considered. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:439 / 460
页数:22
相关论文
共 50 条
  • [1] 1/N-EXPANSION - RENORMALIZATION AND CRITICAL INDEXES OF SIGMA-MODELS IN EXCEPTIONAL SPATIAL DIMENSIONS
    NALIMOV, MY
    [J]. VESTNIK LENINGRADSKOGO UNIVERSITETA SERIYA FIZIKA KHIMIYA, 1984, (02): : 6 - 11
  • [2] A NEW 1/N-EXPANSION PROCEDURE
    STEPANOV, SS
    TUTIK, RS
    [J]. ZHURNAL EKSPERIMENTALNOI I TEORETICHESKOI FIZIKI, 1991, 100 (02): : 415 - 421
  • [3] 1/n-expansion of resonant states
    Aglietti, U. G.
    [J]. MODERN PHYSICS LETTERS A, 2016, 31 (25)
  • [4] THE 1/N-EXPANSION AND COHERENT STATES
    MUR, VD
    POPOV, VS
    [J]. ZHURNAL EKSPERIMENTALNOI I TEORETICHESKOI FIZIKI, 1990, 97 (06): : 1729 - 1740
  • [5] Spin glasses and frustrated percolation: A renormalization group approach
    Pezzella, U
    Coniglio, A
    [J]. PHYSICA A, 1997, 237 (3-4): : 353 - 362
  • [6] On the 1/N-expansion in chiral perturbation theory
    Leutwyler, H
    [J]. NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 1998, 64 : 223 - 231
  • [7] Functional renormalization group for frustrated magnets with nondiagonal spin interactions
    Buessen, Finn Lasse
    Noculak, Vincent
    Trebst, Simon
    Reuther, Johannes
    [J]. PHYSICAL REVIEW B, 2019, 100 (12)
  • [8] Solving matrix models in the 1/N-expansion
    Chekhov, L. O.
    [J]. RUSSIAN MATHEMATICAL SURVEYS, 2006, 61 (03) : 483 - 543
  • [9] THE 1/N-EXPANSION IN QUANTUM-MECHANICS
    MUR, VD
    POPOV, VS
    SERGEYEV, AV
    [J]. ZHURNAL EKSPERIMENTALNOI I TEORETICHESKOI FIZIKI, 1990, 97 (01): : 32 - 46
  • [10] 1/N-EXPANSION FOR THE ANHARMONIC-OSCILLATOR
    KOUDINOV, AV
    SMONDYREV, MA
    [J]. CZECHOSLOVAK JOURNAL OF PHYSICS, 1982, 32 (05) : 556 - 564