A NEW 1/N-EXPANSION PROCEDURE

被引:0
|
作者
STEPANOV, SS
TUTIK, RS
机构
来源
关键词
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
An effective method is developed for calculating the 1/N-expansion coefficients of arbitrary high orders both for the ground and radially excited states of the discrete spectrum of the Schrodinger equation. The method is based on the semiclassical interpretation of the 1/N-expansion. The explicit application of the expansion over the Planck's constant clarifies the cause of the complementarity in the 1/N-approach and WKB approximation. The transition to the Riccati equation and h-expansion allows to apply the quantization condition for involving thte wavefunction nodes, what results in the simple recursive relations. In the example of the funnel - shaped potential the calculations are given for the first ten coefficients in the 1/n-expansion scheme for energy with the various values of the orbital and radial quantum numbers.
引用
收藏
页码:415 / 421
页数:7
相关论文
共 50 条
  • [1] A NEW APPROACH TO THE 1/N-EXPANSION FOR THE DIRAC-EQUATION
    STEPANOV, SS
    TUTIK, RS
    [J]. PHYSICS LETTERS A, 1992, 163 (1-2) : 26 - 31
  • [2] 1/n-expansion of resonant states
    Aglietti, U. G.
    [J]. MODERN PHYSICS LETTERS A, 2016, 31 (25)
  • [3] THE 1/N-EXPANSION AND COHERENT STATES
    MUR, VD
    POPOV, VS
    [J]. ZHURNAL EKSPERIMENTALNOI I TEORETICHESKOI FIZIKI, 1990, 97 (06): : 1729 - 1740
  • [4] On the 1/N-expansion in chiral perturbation theory
    Leutwyler, H
    [J]. NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 1998, 64 : 223 - 231
  • [5] Solving matrix models in the 1/N-expansion
    Chekhov, L. O.
    [J]. RUSSIAN MATHEMATICAL SURVEYS, 2006, 61 (03) : 483 - 543
  • [6] THE 1/N-EXPANSION IN QUANTUM-MECHANICS
    MUR, VD
    POPOV, VS
    SERGEYEV, AV
    [J]. ZHURNAL EKSPERIMENTALNOI I TEORETICHESKOI FIZIKI, 1990, 97 (01): : 32 - 46
  • [7] 1/N-EXPANSION FOR THE ANHARMONIC-OSCILLATOR
    KOUDINOV, AV
    SMONDYREV, MA
    [J]. CZECHOSLOVAK JOURNAL OF PHYSICS, 1982, 32 (05) : 556 - 564
  • [8] ON THE STRUCTURE OF LARGE ORDERS IN 1/N-EXPANSION
    POPOV, VS
    SERGEEV, AV
    SHCHEBLYKIN, AV
    [J]. ZHURNAL EKSPERIMENTALNOI I TEORETICHESKOI FIZIKI, 1992, 102 (05): : 1453 - 1468
  • [9] 1/N-EXPANSION FOR THE KLEIN-GORDON EQUATION
    STEPANOV, SS
    TUTIK, RS
    [J]. ZHURNAL EKSPERIMENTALNOI I TEORETICHESKOI FIZIKI, 1992, 101 (01): : 18 - 25
  • [10] STRANGENESS AND THE LARGE N-EXPANSION
    BURAS, AJ
    [J]. NUCLEAR PHYSICS A, 1988, 479 : C399 - C421