Robust nonlinear-nonquadratic feedback control via parameter-dependent Lyapunov functions

被引:7
|
作者
Haddad, WM
Chellaboina, VS
机构
[1] School of Aerospace Engineering, Georgia Institute of Technology, Atlanta, GA
[2] School of Aerospace Engineering, Georgia Institute of Technology, Atlanta, GA
关键词
D O I
10.1080/002071797224423
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper we develop a unified framework to address the problem of optimal nonlinear-nonquadratic robust control for systems with nonlinear time-invariant real parameter uncertainty. Specifically, we transform a given robust nonlinear control problem into an optimal control problem by modifying the performance functional to account for the system uncertainty. Robust stability of the closed-loop nonlinear system is guaranteed by means of a parameter-dependent Lyapunov function composed of a fixed (parameter-independent) and variable (parameter-dependent) part. The fixed part of the Lyapunov function can clearly be seen to be the solution to the steady-state Hamilton-Jacobi-Bellman equation for the nominal system. The overall framework generalizes the classical Hamilton-Jacobi-Bellman conditions to address the design of robust optimal controllers for uncertain nonlinear systems via parameter-dependent Lyapunov functions and provides the foundation for extending robust linear-quadratic controller synthesis to robust nonlinear-nonquadratic problems.
引用
收藏
页码:843 / 861
页数:19
相关论文
共 50 条
  • [21] NONQUADRATIC LYAPUNOV FUNCTIONS FOR ROBUST-CONTROL
    BLANCHINI, F
    [J]. AUTOMATICA, 1995, 31 (03) : 451 - 461
  • [22] A New Parameter-Dependent Lyapunov Function Approach for Robust Control
    Ho, Cheng-Chang
    Chou, Yung-Shan
    Chang, Fan-Ren
    [J]. 2014 IEEE INTERNATIONAL CONFERENCE ON SYSTEM SCIENCE AND ENGINEERING (ICSSE), 2014, : 50 - 55
  • [23] PARAMETER-DEPENDENT LYAPUNOV FUNCTIONS AND THE POPOV CRITERION IN ROBUST ANALYSIS AND SYNTHESIS
    HADDAD, WM
    BERNSTEIN, DS
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1995, 40 (03) : 536 - 543
  • [24] An LMI characterization of polynomial parameter-dependent Lyapunov functions for robust stability
    Oliveira, R. C. L. F.
    Leite, V. J. S.
    de Oliveira, M. C.
    Peres, P. L. D.
    [J]. 2005 44TH IEEE CONFERENCE ON DECISION AND CONTROL & EUROPEAN CONTROL CONFERENCE, VOLS 1-8, 2005, : 5024 - 5029
  • [25] Parameter-dependent Lyapunov functions for state-derivative feedback control in polytopic linear systems
    da Silva, E. R. P.
    Assuncao, E.
    Teixeira, M. C. M.
    Faria, F. A.
    Buzachero, L. F. S.
    [J]. INTERNATIONAL JOURNAL OF CONTROL, 2011, 84 (08) : 1377 - 1386
  • [26] Analysis and synthesis of reliable flight control systems via parameter-dependent Lyapunov functions
    Liao, F
    Wang, JL
    [J]. PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART I-JOURNAL OF SYSTEMS AND CONTROL ENGINEERING, 2004, 218 (I6) : 433 - 450
  • [27] Output feedback controller design for polynomial linear parameter varying system via parameter-dependent Lyapunov functions
    Han, Xiaobao
    Liu, Zhenbao
    Li, Huacong
    Liu, Xianwei
    [J]. ADVANCES IN MECHANICAL ENGINEERING, 2017, 9 (02)
  • [28] Robust H2/H infinity control based on parameter-dependent Lyapunov functions
    Ma, Qing-Liang
    Hu, Chang-Hua
    [J]. Xitong Fangzhen Xuebao / Journal of System Simulation, 2007, 19 (10): : 2244 - 2247
  • [29] Robust Control for Nonlinear Uncertain Systems Using Parameter Dependent Lyapunov Functions
    Zhi, Yue
    Yu, Jinyong
    Lu, Jianhua
    [J]. 2014 IEEE CHINESE GUIDANCE, NAVIGATION AND CONTROL CONFERENCE (CGNCC), 2014, : 1873 - 1876
  • [30] Robust L1 filtering with pole constraint in a disk via parameter-dependent Lyapunov functions
    Li, YH
    Wang, CH
    Gao, HJ
    [J]. PROCEEDINGS OF THE 2004 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 2004, : 5406 - 5407