Shell instability phenomena studied by multiparametric non-linear analyses

被引:0
|
作者
Eriksson, A [1 ]
Pacoste, C [1 ]
机构
[1] Royal Inst Technol, KTH, Struct Mech Grp, SE-10044 Stockholm, Sweden
关键词
shells; instability; numerical analysis; finite elements; multi-parametric setting;
D O I
暂无
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
The paper describes how quasi-static, conservative instability problems can be analysed in a multi-parametric context; using generalised path-following procedures for augmented equilibrium problems. The developed numerical algorithms are based on systematic manifold evaluations, aimed at finding the structural response and critical state solutions, under the variations of certain parameters (geometrical, mechanical, loading or imperfection) deemed relevant for the problem. A co-rotational flat facet triangular element is specially designed to fit the algorithms. The multi-parametric setting can be used for an improved phenomenological understanding and in the theoretical treatment of all relevant mechanical phenomena occurring in optimised shell structures. They can also be important parts in a practical design process. The results give interesting visualisations of catastrophe theoretical basic cases.
引用
收藏
页码:459 / 469
页数:11
相关论文
共 50 条
  • [31] NON-LINEAR EVOLUTION OF BUNEMAN INSTABILITY
    ISHIHARA, O
    HIROSE, A
    LANGDON, AB
    [J]. PHYSICS OF FLUIDS, 1981, 24 (03) : 452 - 464
  • [32] NON-LINEAR SATURATION OF DCLC INSTABILITY
    MYER, RC
    SIMON, A
    [J]. BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1978, 23 (07): : 755 - 755
  • [33] STOCHASTIC INSTABILITY OF A NON-LINEAR OSCILLATOR
    RECHESTER, AB
    STIX, TH
    [J]. PHYSICAL REVIEW A, 1979, 19 (04): : 1656 - 1665
  • [34] NON-LINEAR SATURATION OF THE BUNEMAN INSTABILITY
    ISHIHARA, O
    HIROSE, A
    LANGDON, AB
    [J]. PHYSICAL REVIEW LETTERS, 1980, 44 (21) : 1404 - 1407
  • [35] NON-LINEAR ELASTIC SHELL THEORY
    LIBAI, A
    SIMMONDS, JG
    [J]. ADVANCES IN APPLIED MECHANICS, 1983, 23 : 271 - 371
  • [36] NON-LINEAR EQUATIONS OF SHELL EQUILIBRIUM
    DAREVSKI.VM
    [J]. DOKLADY AKADEMII NAUK SSSR, 1966, 170 (03): : 537 - &
  • [37] ON RHEOLOGY OF NON-LINEAR SHELL PROBLEMS
    SOBOTKA, Z
    [J]. BULLETIN DE L ACADEMIE POLONAISE DES SCIENCES-SERIE DES SCIENCES TECHNIQUES, 1964, 12 (11AS): : 44 - &
  • [38] Spectral analyses of non-linear interactions
    Balachandran, B
    Khan, KA
    [J]. MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 1996, 10 (06) : 711 - 727
  • [39] ANALYSES OF LED NON-LINEAR DISTORTIONS
    ASATANI, K
    KIMURA, T
    [J]. IEEE TRANSACTIONS ON ELECTRON DEVICES, 1978, 25 (02) : 199 - 207
  • [40] ANALYSES OF LED NON-LINEAR DISTORTIONS
    ASATANI, K
    KIMURA, T
    [J]. IEEE JOURNAL OF SOLID-STATE CIRCUITS, 1978, 13 (01) : 125 - 133