FORECASTING THE RISK OF TRAFFIC ACCIDENTS BY USING THE ARTIFICIAL NEURAL NETWORKS

被引:4
|
作者
Sliupas, Tomas [1 ]
Bazaras, Zilvinas [2 ]
机构
[1] PE Rd & Transport Res Inst, LT-44009 Kaunas, Lithuania
[2] Kaunas Univ Technol, Dept Transport Engn, LT-44312 Kaunas, Lithuania
来源
关键词
traffic accidents; traffic accident forecasting; traffic accidents in Lithuania; reasons of traffic accidents; Artificial Neural Networks (ANN); Neural Networks (NN);
D O I
10.3846/bjrbe.2013.37
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
The paper is focused on the impact analysis of 12 different factors influencing the traffic accident risk on the main and national roads of Lithuania. These factors describe technical road information and road environment. The analysed roads are divided into 341 sections. Relevant information on each road section is provided, including traffic volume, number of accidents, and factor descriptions. Afterwards the artificial neural networks aimed at forecasting the traffic accident risk are built. Calculations reveal the best Artificial Neural Network configuration which generates the best forecasting results.
引用
收藏
页码:289 / 293
页数:5
相关论文
共 50 条
  • [21] Forecasting Monsoon Precipitation Using Artificial Neural Networks
    曹鸿兴
    魏凤英
    [J]. Advances in Atmospheric Sciences, 2001, (05) : 950 - 958
  • [22] Forecasting of ozone pollution using artificial neural networks
    Ettouney, Reem S.
    Mjalli, Farouq S.
    Zaki, John G.
    El-Rifai, Mahmoud A.
    Ettouney, Hisham M.
    [J]. MANAGEMENT OF ENVIRONMENTAL QUALITY, 2009, 20 (06) : 668 - 683
  • [23] Forecasting tanker market using artificial neural networks
    Lyridis D.V.
    Zacharioudakis P.
    Mitrou P.
    Mylonas A.
    [J]. Maritime Economics & Logistics, 2004, 6 (2) : 93 - 108
  • [24] Electricity Prices Forecasting using Artificial Neural Networks
    Alanis, Alma Y.
    [J]. IEEE LATIN AMERICA TRANSACTIONS, 2018, 16 (01) : 105 - 111
  • [25] River flow forecasting using artificial neural networks
    Zakermoshfegh, M
    Ghodsian, A
    Montazer, GA
    [J]. HYDRAULICS OF DAMS AND RIVER STRUCTURES, 2004, : 425 - 430
  • [26] POPULATION DYNAMICS FORECASTING USING ARTIFICIAL NEURAL NETWORKS
    Benzer, Recep
    [J]. FRESENIUS ENVIRONMENTAL BULLETIN, 2015, 24 (02): : 460 - 466
  • [27] Forecasting monsoon precipitation using artificial neural networks
    Wu, XD
    Cao, HX
    Flitman, A
    Wei, FY
    Feng, GL
    [J]. ADVANCES IN ATMOSPHERIC SCIENCES, 2001, 18 (05) : 950 - 958
  • [28] Forecasting reference evapotranspiration using artificial neural networks
    Gonzalez-Camacho, Juan Manuel
    Cervantes-Osornio, Rocio
    Ojeda-Bustamante, Waldo
    Lopez-Cruz, Irineo
    [J]. INGENIERIA HIDRAULICA EN MEXICO, 2008, 23 (01): : 127 - 138
  • [29] Improved flow forecasting using artificial neural networks
    Lekkas, D. F.
    Onof, C.
    [J]. Proceedings of the 9th International Conference on Environmental Science and Technology, Vol A - Oral Presentations, Pts A and B, 2005, : A877 - A884
  • [30] Electricity price forecasting using artificial neural networks
    Singhal, Deepak
    Swarup, K. S.
    [J]. INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2011, 33 (03) : 550 - 555