Schauder estimates for equations with fractional derivatives

被引:53
|
作者
Clément, P
Gripenberg, G
Londen, SO
机构
[1] Delft Univ Technol, Fac Tech Math & Informat, NL-2600 GA Delft, Netherlands
[2] Helsinki Univ Technol, Inst Math, FIN-02015 Hut, Finland
关键词
fractional derivative; maximal regularity; Schauder estimate; Holder continuity; fundamental solution; integro-differential equation;
D O I
10.1090/S0002-9947-00-02507-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The equation (*) D-t(alpha)(u - h(1)) + D-x(beta)(u - h(2)) = f, 0 < alpha, beta < 1, t, x greater than or equal to 0, where D-t(alpha) and D-x(beta) are fractional derivatives of order alpha and beta is studied. It is shown that if f = f((t) over bar,(x) over bar), h(1) = h(1)((x) over bar), and h(2) = h(2)((t) over bar) are Holder-continuous and f(0, 0) = 0, then there is a solution such that D(t)(alpha)u and D(x)(beta)u are Holder-continuous as well. This is proved by first considering an abstract fractional evolution equation and then applying the results obtained to (*). Finally the solution of (*) with f = 1 is studied.
引用
收藏
页码:2239 / 2260
页数:22
相关论文
共 50 条
  • [21] FRACTIONAL EQUATIONS AND A THEOREM OF BROUWER-SCHAUDER TYPE
    Burton, T. A.
    FIXED POINT THEORY, 2013, 14 (01): : 91 - 96
  • [22] Commutator estimates with fractional derivatives and local existence for the generalized MHD equations
    Zaihong Jiang
    Caochuan Ma
    Yong Zhou
    Zeitschrift für angewandte Mathematik und Physik, 2021, 72
  • [23] Decay estimates for evolution equations with classical and fractional time-derivatives
    Affili, Elisa
    Valdinoci, Enrico
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2019, 266 (07) : 4027 - 4060
  • [24] Commutator estimates with fractional derivatives and local existence for the generalized MHD equations
    Jiang, Zaihong
    Ma, Caochuan
    Zhou, Yong
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2021, 72 (03):
  • [25] SCHAUDER ESTIMATES FOR A CLASS OF NON-LOCAL ELLIPTIC EQUATIONS
    Dong, Hongjie
    Kim, Doyoon
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2013, 33 (06) : 2319 - 2347
  • [26] ON THE SCHAUDER-TYPE ANISOTROPIC ESTIMATES FOR THE SOLUTIONS OF ELLIPTIC EQUATIONS
    KRUZHKOV, SN
    LOPES, M
    DOKLADY AKADEMII NAUK SSSR, 1980, 254 (04): : 788 - 791
  • [27] SCHAUDER ESTIMATES FOR SINGULAR PARABOLIC AND ELLIPTIC EQUATIONS OF KELDYSH TYPE
    Lieberman, Gary M.
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2016, 21 (05): : 1525 - 1566
  • [28] Schauder Estimates for Nonlocal Equations with Singular Lévy Measures
    Hao, Zimo
    Wang, Zhen
    Wu, Mingyan
    POTENTIAL ANALYSIS, 2024, 61 (01) : 13 - 33
  • [29] Interior Schauder Estimates for Elliptic Equations Associated with Levy Operators
    Kuehn, Franziska
    POTENTIAL ANALYSIS, 2022, 56 (03) : 459 - 481
  • [30] On Schauder estimates for a class of nonlocal fully nonlinear parabolic equations
    Hongjie Dong
    Hong Zhang
    Calculus of Variations and Partial Differential Equations, 2019, 58