Proposal for a phase-coherent thermoelectric transistor

被引:49
|
作者
Giazotto, F. [1 ,2 ]
Robinson, J. W. A. [3 ]
Moodera, J. S. [4 ,5 ]
Bergeret, F. S. [6 ,7 ]
机构
[1] Inst Nanosci CNR, NEST, I-56127 Pisa, Italy
[2] Scuola Normale Super Pisa, I-56127 Pisa, Italy
[3] Univ Cambridge, Dept Mat Sci & Met, Cambridge CB3 0FS, England
[4] MIT, Dept Phys, Cambridge, MA 02139 USA
[5] MIT, Francis Bitter Magnet Lab, Cambridge, MA 02139 USA
[6] UPV, EHU, Ctr Mixto CSIC, CFM,MPC, E-20018 San Sebastian, Spain
[7] DIPC, E-20018 San Sebastian, Spain
基金
美国国家科学基金会; 欧洲研究理事会;
关键词
ELECTRON-SPIN POLARIZATION; TUNNEL-JUNCTIONS; MAGNETIC-FIELD; SUPERCONDUCTOR; BARRIERS; ZERO;
D O I
10.1063/1.4893443
中图分类号
O59 [应用物理学];
学科分类号
摘要
Identifying materials and devices which offer efficient thermoelectric effects at low temperature is a major obstacle for the development of thermal management strategies for low-temperature electronic systems. Superconductors cannot offer a solution since their near perfect electron-hole symmetry leads to a negligible thermoelectric response; however, here we demonstrate theoretically a superconducting thermoelectric transistor which offers unparalleled figures of merit of up to similar to 45 and Seebeck coefficients as large as a few mV/K at sub-Kelvin temperatures. The device is also phase-tunable meaning its thermoelectric response for power generation can be precisely controlled with a small magnetic field. Our concept is based on a superconductor-normal metal-superconductor interferometer in which the normal metal weak-link is tunnel coupled to a ferromagnetic insulator and a Zeeman split superconductor. Upon application of an external magnetic flux, the interferometer enables phase-coherent manipulation of thermoelectric properties whilst offering efficiencies which approach the Carnot limit. (C) 2014 AIP Publishing LLC.
引用
收藏
页数:5
相关论文
共 50 条
  • [41] Towards phase-coherent caloritronics in superconducting circuits
    Fornieri, Antonio
    Giazotto, Francesco
    [J]. NATURE NANOTECHNOLOGY, 2017, 12 (10) : 944 - 952
  • [42] Optimal phase synchronization in networks of phase-coherent chaotic oscillators
    Skardal, P. S.
    Sevilla-Escoboza, R.
    Vera-Avila, V. P.
    Buldu, J. M.
    [J]. CHAOS, 2017, 27 (01)
  • [43] CONVERSION OF RANDOM-PHASE LIGHT INTO PHASE-COHERENT LIGHT
    PRAKASH, H
    CHANDRA, N
    VASCHASP.
    [J]. PHYSICAL REVIEW A, 1974, 9 (05) : 2167 - 2169
  • [44] First phase-coherent frequency measurement of visible radiation
    Schnatz, H
    Lipphardt, B
    Helmcke, J
    Riehle, F
    Zinner, G
    [J]. PHYSICAL REVIEW LETTERS, 1996, 76 (01) : 18 - 21
  • [45] Phase-coherent transport in trigonal gallium nitride nanowires
    Park, Tae-Eon
    Min, Byoung-Chul
    Lee, Jaejun
    Jeon, Jeehoon
    Lee, Ki-Young
    Choi, Heon-Jin
    Chang, Joonyeon
    [J]. NANOTECHNOLOGY, 2021, 32 (12)
  • [46] Phase-coherent caloritronics with ordinary and topological Josephson junctions
    Hwang, Sun-Yong
    Sothmann, Bjoern
    [J]. EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2020, 229 (04): : 683 - 705
  • [47] New phase-coherent measurements of pulsar braking indices
    Margaret A. Livingstone
    Victoria M. Kaspi
    Fotis P. Gavriil
    Richard N. Manchester
    E. V. G. Gotthelf
    Lucien Kuiper
    [J]. Astrophysics and Space Science, 2007, 308 : 317 - 323
  • [48] Phase-Coherent Dynamics of Quantum Devices with Local Interactions
    Filippone, Michele
    Marguerite, Arthur
    Le Hur, Karyn
    Feve, Gwendal
    Mora, Christophe
    [J]. ENTROPY, 2020, 22 (08)
  • [49] Phase-coherent heat circulators with normal or superconducting contacts
    Acciai, Matteo
    Hajiloo, Fatemeh
    Hassler, Fabian
    Splettstoesser, Janine
    [J]. PHYSICAL REVIEW B, 2021, 103 (08)
  • [50] Geometric and dynamic perspectives on phase-coherent and noncoherent chaos
    Zou, Yong
    Donner, Reik V.
    Kurths, Juergen
    [J]. CHAOS, 2012, 22 (01)