Proposal for a phase-coherent thermoelectric transistor

被引:49
|
作者
Giazotto, F. [1 ,2 ]
Robinson, J. W. A. [3 ]
Moodera, J. S. [4 ,5 ]
Bergeret, F. S. [6 ,7 ]
机构
[1] Inst Nanosci CNR, NEST, I-56127 Pisa, Italy
[2] Scuola Normale Super Pisa, I-56127 Pisa, Italy
[3] Univ Cambridge, Dept Mat Sci & Met, Cambridge CB3 0FS, England
[4] MIT, Dept Phys, Cambridge, MA 02139 USA
[5] MIT, Francis Bitter Magnet Lab, Cambridge, MA 02139 USA
[6] UPV, EHU, Ctr Mixto CSIC, CFM,MPC, E-20018 San Sebastian, Spain
[7] DIPC, E-20018 San Sebastian, Spain
基金
美国国家科学基金会; 欧洲研究理事会;
关键词
ELECTRON-SPIN POLARIZATION; TUNNEL-JUNCTIONS; MAGNETIC-FIELD; SUPERCONDUCTOR; BARRIERS; ZERO;
D O I
10.1063/1.4893443
中图分类号
O59 [应用物理学];
学科分类号
摘要
Identifying materials and devices which offer efficient thermoelectric effects at low temperature is a major obstacle for the development of thermal management strategies for low-temperature electronic systems. Superconductors cannot offer a solution since their near perfect electron-hole symmetry leads to a negligible thermoelectric response; however, here we demonstrate theoretically a superconducting thermoelectric transistor which offers unparalleled figures of merit of up to similar to 45 and Seebeck coefficients as large as a few mV/K at sub-Kelvin temperatures. The device is also phase-tunable meaning its thermoelectric response for power generation can be precisely controlled with a small magnetic field. Our concept is based on a superconductor-normal metal-superconductor interferometer in which the normal metal weak-link is tunnel coupled to a ferromagnetic insulator and a Zeeman split superconductor. Upon application of an external magnetic flux, the interferometer enables phase-coherent manipulation of thermoelectric properties whilst offering efficiencies which approach the Carnot limit. (C) 2014 AIP Publishing LLC.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] PHASE-COHERENT MOLECULAR-DYNAMICS AND PHASE-COHERENT CHEMISTRY
    RUHMAN, S
    WILLIAMS, LR
    JOLY, AG
    KOHLER, B
    NELSON, KA
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1988, 195 : 19 - PHYS
  • [2] SYNTHESIZING PHASE-COHERENT SIGNALS
    PAPAIECK, R
    [J]. MICROWAVES & RF, 1995, 34 (08) : 142 - 142
  • [3] Generation of phase-coherent states
    D'Ariano, GM
    Paris, MGA
    Sacchi, MF
    [J]. PHYSICAL REVIEW A, 1998, 57 (06): : 4894 - 4898
  • [4] Generation of phase-coherent states
    D'Ariano, Giacomo M.
    Paris, Matteo G.A.
    Sacchi, Massimiliano F.
    [J]. Physical Review A. Atomic, Molecular, and Optical Physics, 1998, 57 (06):
  • [5] APPLYING PHASE-COHERENT SIGNALS
    SWETNAM, P
    [J]. MICROWAVES & RF, 1995, 34 (08) : 145 - 145
  • [6] Phase-coherent interferometric imaging
    Baldwin, JE
    [J]. STELLAR SURFACE STRUCTURE, 1996, (176): : 139 - 146
  • [7] MULTITERMINAL PHASE-COHERENT MAGNETOCONDUCTANCE
    PRETRE, A
    MARTINMORENO, L
    PENDRY, JB
    [J]. SUPERLATTICES AND MICROSTRUCTURES, 1992, 11 (03) : 303 - 307
  • [8] A Phase-Coherent Upconverting Parametric Amplifier
    Gray, Blake
    Ponton, Mabel
    Suarez, Almudena
    Kenney, J. Stevenson
    [J]. IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, 2012, 22 (10) : 527 - 529
  • [9] Approximate phase-coherent states and their generation
    Gerry, Christopher C.
    Bui, Trung
    [J]. PHYSICAL REVIEW A, 2009, 80 (03):
  • [10] Phase-coherent amplification of matter waves
    Kozuma, M
    Suzuki, Y
    Torii, Y
    Sugiura, T
    Kuga, T
    Hagley, EW
    Deng, L
    [J]. SCIENCE, 1999, 286 (5448) : 2309 - 2312