Dynamic adjustment of sliding windows over data streams

被引:0
|
作者
Zhang, DD [1 ]
Li, JZ
Zhang, ZG
Wang, WP
Guo, LJ
机构
[1] Harbin Inst Technol, Sch Comp Sci & Technol, Harbin 150006, Peoples R China
[2] Heilongjiang Univ, Sch Comp Sci & Technol, Heilongjiang, Peoples R China
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The data stream systems provide sliding windows to preserve the arrival of recent streaming data in order to support continuous queries in real-time. In this paper, we consider the problem of adjusting the buffer size of sliding windows dynamically when the rate of streaming data changes or when queries start or end. Based on the status of available memory resource and the requirement of queries for memory, we propose the corresponding algorithms of adjustment with greedy method and dynamic programming method, which minimize the total error of queries or achieve low memory overhead. The analytical and experimental results show that our algorithms can be applied to the data stream systems efficiently.
引用
收藏
页码:24 / 33
页数:10
相关论文
共 50 条
  • [41] RLC: ranking lag correlations with flexible sliding windows in data streams
    Wu, Shanshan
    Lin, Huaizhong
    Wang, Wenxiang
    Lu, Dongming
    U, Leong Hou
    Gao, Yunjun
    [J]. PATTERN ANALYSIS AND APPLICATIONS, 2017, 20 (02) : 601 - 611
  • [42] STAGGER: Periodicity mining of data streams using expanding sliding windows
    Elfeky, Mohamed G.
    Aref, Walid G.
    Elmagarmid, Ahmed K.
    [J]. ICDM 2006: SIXTH INTERNATIONAL CONFERENCE ON DATA MINING, PROCEEDINGS, 2006, : 188 - +
  • [43] RLC: ranking lag correlations with flexible sliding windows in data streams
    Shanshan Wu
    Huaizhong Lin
    Wenxiang Wang
    Dongming Lu
    Leong Hou U
    Yunjun Gao
    [J]. Pattern Analysis and Applications, 2017, 20 : 601 - 611
  • [44] Distributed streams algorithms for sliding windows
    Gibbons, PB
    Tirthapura, S
    [J]. THEORY OF COMPUTING SYSTEMS, 2004, 37 (03) : 457 - 478
  • [45] Distributed Streams Algorithms for Sliding Windows
    Phillip B. Gibbons
    Srikanta Tirthapura
    [J]. Theory of Computing Systems, 2004, 37 : 457 - 478
  • [46] Heavy Hitters in Streams and Sliding Windows
    Ben-Basat, Ran
    Einziger, Gil
    Friedman, Roy
    Kassner, Yaron
    [J]. IEEE INFOCOM 2016 - THE 35TH ANNUAL IEEE INTERNATIONAL CONFERENCE ON COMPUTER COMMUNICATIONS, 2016,
  • [47] Mining Frequent Item Sets in Asynchronous Transactional Data Streams over Time Sensitive Sliding Windows Model
    Javaid, Qaisar
    Memon, Farida
    Talpur, Shahnawaz
    Arif, Muhammad
    Awan, Muhammad Daud
    [J]. MEHRAN UNIVERSITY RESEARCH JOURNAL OF ENGINEERING AND TECHNOLOGY, 2016, 35 (04) : 625 - 644
  • [48] RETRACTED: Improved Decaying Bloom Filter for Duplicate Detection in Data Streams Over Sliding Windows (Retracted Article)
    Wang, Xiujun
    Shen, Hong
    [J]. ICCSIT 2010 - 3RD IEEE INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND INFORMATION TECHNOLOGY, VOL 4, 2010, : 348 - 353
  • [49] Regular Expression Pattern Matching with Sliding Windows over Probabilistic Event Streams
    Sugiura, Kento
    Ishikawa, Yoshiharu
    [J]. 2019 IEEE INTERNATIONAL CONFERENCE ON BIG DATA AND SMART COMPUTING (BIGCOMP), 2019, : 103 - 110
  • [50] SPECTRA: Continuous Query Processing for RDF Graph Streams Over Sliding Windows
    Gillani, Syed
    Picard, Gauthier
    Laforest, Frederique
    [J]. 28TH INTERNATIONAL CONFERENCE ON SCIENTIFIC AND STATISTICAL DATABASE MANAGEMENT (SSDBM) 2016), 2016,