Uterus Segmentation in Dynamic MRI using LBP texture descriptors

被引:4
|
作者
Namias, R. [1 ]
Bellemare, M. -E. [2 ]
Rahim, M. [2 ]
Pirro, N. [3 ]
机构
[1] CIFASIS UNR Univ, Rosario, Santa Fe, Argentina
[2] Aix Marseille Univ, LSIS UMR CNRS, F-7296 Marseille, France
[3] Hosp Timone, Digest Surg Dept, Marseille, France
来源
关键词
Dynamic MRI; MRI segmentation; pelvis imaging;
D O I
10.1117/12.2043617
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Pelvic floor disorders cover pathologies of which physiopathology is not well understood. However cases get prevalent with an ageing population. Within the context of a project aiming at modelization of the dynamics of pelvic organs, we have developed an efficient segmentation process. It aims at alleviating the radiologist with a tedious one by one image analysis. From a first contour delineating the uterus-vagina set, the organ border is tracked along a dynamic MRI sequence. The process combines movement prediction, local intensity and texture analysis and active contour geometry control. Movement prediction allows a contour intitialization for next image in the sequence. Intensity analysis provides image-based local contour detection enhanced by local binary pattern (LBP) texture descriptors. Geometry control prohibits self intersections and smoothes the contour. Results show the efficiency of the method with images produced in clinical routine.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Dynamic Texture Segmentation Using Texture Descriptors and Optical Flow Techniques
    Soygaonkar, Pratik
    Paygude, Shilpa
    Vyas, Vibha
    [J]. PROCEEDINGS OF THE 3RD INTERNATIONAL CONFERENCE ON FRONTIERS OF INTELLIGENT COMPUTING: THEORY AND APPLICATIONS (FICTA) 2014, VOL 2, 2015, 328 : 281 - 288
  • [2] Unsupervised Dynamic Texture Segmentation Using Local Descriptors in Volumes
    Chen, Jie
    Zhao, Guoying
    Pietikainen, Matti
    [J]. 2012 21ST INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR 2012), 2012, : 3622 - 3625
  • [3] Unsupervised Dynamic Texture Segmentation Using Local Spatiotemporal Descriptors
    Chen, Jie
    Zhao, Guoying
    Pietikainen, Matti
    [J]. 19TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOLS 1-6, 2008, : 2937 - 2940
  • [4] Automatic Dynamic Texture Segmentation Using Local Descriptors and Optical Flow
    Chen, Jie
    Zhao, Guoying
    Salo, Mikko
    Rahtu, Esa
    Pietikainen, Matti
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2013, 22 (01) : 326 - 339
  • [5] Mammographic Images Segmentation using Texture Descriptors
    Mascaro, Angelica A.
    Mello, Carlos A. B.
    Santos, Wellington P.
    Cavalcanti, George D. C.
    [J]. 2009 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-20, 2009, : 3653 - +
  • [6] Dynamic Texture Segmentation of Video Using Texture Descriptors and Optical Flow of pixels for Automating Monitoring in Different Environments
    Sasidharan, Rahul
    Menaka, D.
    [J]. 2013 INTERNATIONAL CONFERENCE ON COMMUNICATIONS AND SIGNAL PROCESSING (ICCSP), 2013, : 841 - 846
  • [7] Evolving descriptors for texture segmentation
    Jacquelin, C
    Aurengo, A
    Hejblum, G
    [J]. PATTERN RECOGNITION, 1997, 30 (07) : 1069 - 1079
  • [8] Survey on LBP based texture descriptors for image classification
    Nanni, Loris
    Lumini, Alessandra
    Brahnam, Sheryl
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2012, 39 (03) : 3634 - 3641
  • [9] DYNAMIC TEXTURE RECOGNITION USING ENHANCED LBP FEATURES
    Ren, Jianfeng
    Jiang, Xudong
    Yuan, Junsong
    [J]. 2013 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2013, : 2400 - 2404
  • [10] Image Enhancement of Blurry DR Images Using FLIT-LBP Texture Descriptors
    Bi Bi
    Li Zeng
    Baodong Liu
    [J]. Journal of Nondestructive Evaluation, 2011, 30 : 179 - 185