Mammographic Images Segmentation using Texture Descriptors

被引:1
|
作者
Mascaro, Angelica A. [1 ]
Mello, Carlos A. B. [2 ]
Santos, Wellington P. [2 ]
Cavalcanti, George D. C. [1 ]
机构
[1] Univ Fed Pernambuco, Ctr Informat, Recife, PE, Brazil
[2] Univ Pernambuco, Polytech Sch Pernambuco, BR-50720001 Recife, PE, Brazil
关键词
D O I
10.1109/IEMBS.2009.5333696
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Tissue classification in mammography can help the diagnosis of breast cancer by separating healthy tissue from lesions. We present herein the use of three texture descriptors for breast tissue segmentation purposes: the Sum Histogram, the Gray Level Co-Occurrence Matrix (GLCM) and the Local Binary Pattern (LBP). A modification of the LBP is also proposed for a better distinction of the tissues. In order to segment the image into its tissues, these descriptors are compared using a fidelity index and two clustering algorithms: k-Means and SOM (Self-Organizing Maps).
引用
收藏
页码:3653 / +
页数:2
相关论文
共 50 条
  • [1] EM texture segmentation of mammographic images
    Zwiggelaar, R
    Planiol, P
    Martí, J
    Martí, R
    Blot, L
    Denton, ERE
    Rubin, CME
    [J]. DIGITAL MAMMOGRAPHY, PROCEEDINGS, 2003, : 223 - 227
  • [2] Texture Based Segmentation using Statistical Properties for Mammographic Images
    Kekre, H. B.
    Gharge, Saylee
    [J]. INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2010, 1 (05) : 102 - 107
  • [3] Deviation analysis for texture segmentation of breast lesions in mammographic images
    Mughal, Bushra
    Muhammad, Nazeer
    Sharif, Muhammad
    [J]. EUROPEAN PHYSICAL JOURNAL PLUS, 2018, 133 (11):
  • [4] Deviation analysis for texture segmentation of breast lesions in mammographic images
    Bushra Mughal
    Nazeer Muhammad
    Muhammad Sharif
    [J]. The European Physical Journal Plus, 133
  • [5] Segmentation of electron microscopy images through Gabor texture descriptors
    Navarro, R
    Nestares, O
    [J]. IMAGE AND VIDEO PROCESSING IV, 1996, 2666 : 64 - 72
  • [6] Dynamic Texture Segmentation Using Texture Descriptors and Optical Flow Techniques
    Soygaonkar, Pratik
    Paygude, Shilpa
    Vyas, Vibha
    [J]. PROCEEDINGS OF THE 3RD INTERNATIONAL CONFERENCE ON FRONTIERS OF INTELLIGENT COMPUTING: THEORY AND APPLICATIONS (FICTA) 2014, VOL 2, 2015, 328 : 281 - 288
  • [7] Characterizing mammographic images by using generic texture features
    Haeberle, Lothar
    Wagner, Florian
    Fasching, Peter A.
    Jud, Sebastian M.
    Heusinger, Katharina
    Loehberg, Christian R.
    Hein, Alexander
    Bayer, Christian M.
    Hack, Carolin C.
    Lux, Michael P.
    Binder, Katja
    Elter, Matthias
    Muenzenmayer, Christian
    Schulz-Wendtland, Ruediger
    Meier-Meitinger, Martina
    Adamietz, Boris R.
    Uder, Michael
    Beckmann, Matthias W.
    Wittenberg, Thomas
    [J]. BREAST CANCER RESEARCH, 2012, 14 (02)
  • [8] Characterizing mammographic images by using generic texture features
    Lothar Häberle
    Florian Wagner
    Peter A Fasching
    Sebastian M Jud
    Katharina Heusinger
    Christian R Loehberg
    Alexander Hein
    Christian M Bayer
    Carolin C Hack
    Michael P Lux
    Katja Binder
    Matthias Elter
    Christian Münzenmayer
    Rüdiger Schulz-Wendtland
    Martina Meier-Meitinger
    Boris R Adamietz
    Michael Uder
    Matthias W Beckmann
    Thomas Wittenberg
    [J]. Breast Cancer Research, 14
  • [9] Evolving descriptors for texture segmentation
    Jacquelin, C
    Aurengo, A
    Hejblum, G
    [J]. PATTERN RECOGNITION, 1997, 30 (07) : 1069 - 1079
  • [10] Classification of hysteroscopical images using texture and vessel descriptors
    Vlachokosta, Alexandra A.
    Asvestas, Pantelis A.
    Gkrozou, Fani
    Lavasidis, Lazaros
    Matsopoulos, George K.
    Paschopoulos, Minas
    [J]. MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2013, 51 (08) : 859 - 867