Automatic lesion border selection in dermoscopy images using morphology and color features

被引:11
|
作者
Mishra, Nabin K. [1 ]
Kaur, Ravneet [2 ]
Kasmi, Reda [3 ,4 ]
Hagerty, Jason R. [1 ]
LeAnder, Robert [2 ]
Stanley, Ronald J. [5 ]
Moss, Randy H. [5 ]
Stoecker, William V. [1 ]
机构
[1] Stoecker & Associates, Rolla, MO USA
[2] Southern Illinois Univ, Dept Elect & Comp Engn, Edwardsville, IL 62026 USA
[3] Univ Bejaia, Dept Elect Engn, Bejaia, Algeria
[4] Univ Bouira, Dept Elect Engn, Bouira, Algeria
[5] Missouri Univ Sci & Technol, Dept Elect & Comp Engn, Rolla, MO 65409 USA
基金
美国国家卫生研究院;
关键词
border; classifier; dermoscopy; image analysis; lesion segmentation; melanoma; skin cancer; GRADIENT VECTOR FLOW; SKIN-CANCER; SEGMENTATION; DIAGNOSIS; CLASSIFICATION;
D O I
10.1111/srt.12685
中图分类号
R75 [皮肤病学与性病学];
学科分类号
100206 ;
摘要
Purpose We present a classifier for automatically selecting a lesion border for dermoscopy skin lesion images, to aid in computer-aided diagnosis of melanoma. Variation in photographic technique of dermoscopy images makes segmentation of skin lesions a difficult problem. No single algorithm provides an acceptable lesion border to allow further processing of skin lesions. Methods We present a random forests border classifier model to select a lesion border from 12 segmentation algorithm borders, graded on a "good-enough" border basis. Morphology and color features inside and outside the automatic border are used to build the model. Results For a random forests classifier applied to an 802-lesion test set, the model predicts a satisfactory border in 96.38% of cases, in comparison to the best single border algorithm, which detects a satisfactory border in 85.91% of cases. Conclusion The performance of the classifier-based automatic skin lesion finder is found to be better than any single algorithm used in this research.
引用
收藏
页码:544 / 552
页数:9
相关论文
共 50 条
  • [31] Skin Lesion Classification in Dermoscopy Images Using Synergic Deep Learning
    Zhang, Jianpeng
    Xie, Yutong
    Wu, Qi
    Xia, Yong
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2018, PT II, 2018, 11071 : 12 - 20
  • [32] A Deep Learning Based Approach to Skin Lesion Border Extraction With a Novel Edge Detector in Dermoscopy Images
    Ali, Abder-Rahman
    Li, Jingpeng
    O'Shea, Sally Jane
    Yang, Guang
    Trappenberg, Thomas
    Ye, Xujiong
    2019 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2019,
  • [33] 0 Automatic Psoriasis Lesion Segmentation from Raw Color Images using Deep Learning
    Raj, Ritesh
    Londhe, Narendra D.
    Sonawane, Rajendra S.
    2020 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE, 2020, : 723 - 728
  • [34] Automatic Lumen Border Detection in IVUS Images Using Deep Learning Model and Handcrafted Features
    Li, Kai
    Tong, Jijun
    Zhu, Xinjian
    Xia, Shudong
    ULTRASONIC IMAGING, 2021, 43 (02) : 59 - 73
  • [35] Fast and accurate border detection in dermoscopy images using statistical region merging
    Celebi, M. Emre
    Kingravi, Hassan A.
    Iyatomi, Hitoshi
    Lee, JeongKyu
    Aslandogan, Y. Alp
    Van Stoecker, William
    Moss, Randy
    Malters, Joseph M.
    Marghoob, Ashfaq A.
    MEDICAL IMAGING 2007: IMAGE PROCESSING, PTS 1-3, 2007, 6512
  • [36] Towards an Automatic Bag-of-Features Model for the Classification of Dermoscopy Images: The Influence of Segmentation
    Barata, Catarina
    Marques, Jorge S.
    Celebi, M. Emre
    2013 8TH INTERNATIONAL SYMPOSIUM ON IMAGE AND SIGNAL PROCESSING AND ANALYSIS (ISPA), 2013, : 274 - +
  • [37] Automatic segmentation of dermoscopy images using saliency combined with Otsu threshold
    Fan, Haidi
    Xie, Fengying
    Li, Yang
    Jian, Zhiguo
    Liu, Jie
    COMPUTERS IN BIOLOGY AND MEDICINE, 2017, 85 : 75 - 85
  • [38] Automatic telangiectasia analysis in dermoscopy images using adaptive critic design
    Cheng, B.
    Stanley, R. J.
    Stoecker, W. V.
    Hinton, K.
    SKIN RESEARCH AND TECHNOLOGY, 2012, 18 (04) : 389 - 396
  • [39] Automatic Separation of Basal Cell Carcinoma from Benign Lesions in Dermoscopy Images with Border Thresholding Techniques
    Mishra, Nabin K.
    Kaur, Ravneet
    Kasmi, Reda
    Kefel, Serkan
    Guvenc, Pelin
    Cole, Justin G.
    Hagerty, Jason R.
    Aradhyula, Hemanth Y.
    LeAnder, Robert
    Stanley, R. Joe
    Moss, Randy H.
    Stoecker, William V.
    PROCEEDINGS OF THE 12TH INTERNATIONAL JOINT CONFERENCE ON COMPUTER VISION, IMAGING AND COMPUTER GRAPHICS THEORY AND APPLICATIONS (VISIGRAPP 2017), VOL 4, 2017, : 115 - 123
  • [40] Melanoma recognition in dermoscopy images using lesion's peripheral region information
    Tajeddin, Neda Zamani
    Asl, Babak Mohammadzadeh
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2018, 163 : 143 - 153