Automatic lesion border selection in dermoscopy images using morphology and color features

被引:11
|
作者
Mishra, Nabin K. [1 ]
Kaur, Ravneet [2 ]
Kasmi, Reda [3 ,4 ]
Hagerty, Jason R. [1 ]
LeAnder, Robert [2 ]
Stanley, Ronald J. [5 ]
Moss, Randy H. [5 ]
Stoecker, William V. [1 ]
机构
[1] Stoecker & Associates, Rolla, MO USA
[2] Southern Illinois Univ, Dept Elect & Comp Engn, Edwardsville, IL 62026 USA
[3] Univ Bejaia, Dept Elect Engn, Bejaia, Algeria
[4] Univ Bouira, Dept Elect Engn, Bouira, Algeria
[5] Missouri Univ Sci & Technol, Dept Elect & Comp Engn, Rolla, MO 65409 USA
基金
美国国家卫生研究院;
关键词
border; classifier; dermoscopy; image analysis; lesion segmentation; melanoma; skin cancer; GRADIENT VECTOR FLOW; SKIN-CANCER; SEGMENTATION; DIAGNOSIS; CLASSIFICATION;
D O I
10.1111/srt.12685
中图分类号
R75 [皮肤病学与性病学];
学科分类号
100206 ;
摘要
Purpose We present a classifier for automatically selecting a lesion border for dermoscopy skin lesion images, to aid in computer-aided diagnosis of melanoma. Variation in photographic technique of dermoscopy images makes segmentation of skin lesions a difficult problem. No single algorithm provides an acceptable lesion border to allow further processing of skin lesions. Methods We present a random forests border classifier model to select a lesion border from 12 segmentation algorithm borders, graded on a "good-enough" border basis. Morphology and color features inside and outside the automatic border are used to build the model. Results For a random forests classifier applied to an 802-lesion test set, the model predicts a satisfactory border in 96.38% of cases, in comparison to the best single border algorithm, which detects a satisfactory border in 85.91% of cases. Conclusion The performance of the classifier-based automatic skin lesion finder is found to be better than any single algorithm used in this research.
引用
收藏
页码:544 / 552
页数:9
相关论文
共 50 条
  • [1] Lesion border detection in dermoscopy images
    Celebi, M. Emre
    Iyatomi, Hitoshi
    Schaefer, Gerald
    Stoecker, William V.
    COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2009, 33 (02) : 148 - 153
  • [2] Lesion border detection in dermoscopy images using dynamic programming
    Abbas, Qaisar
    Emre Celebi, M.
    Fondon Garcia, Irene
    Rashid, Muhammad
    SKIN RESEARCH AND TECHNOLOGY, 2011, 17 (01) : 91 - 100
  • [3] Lesion Border Detection in Dermoscopy Images Using Bilateral Filter
    Al-abayechi, Alaa Ahmed Abbas
    Logeswaran, Rajasvaran
    Guo, Xiaoning
    Tan, Wooi-Haw
    2013 IEEE INTERNATIONAL CONFERENCE ON SIGNAL AND IMAGE PROCESSING APPLICATIONS (IEEE ICSIPA 2013), 2013, : 365 - 368
  • [4] Automated Lesion Border Detection of Dermoscopy Images Using Spectral Clustering
    Saleh, Fahimeh Sadat
    Azmi, Reza
    2015 2ND INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION AND IMAGE ANALYSIS (IPRIA), 2015,
  • [5] Lesion Border Detection in Dermoscopy Images Using Ensembles of Thresholding Methods
    Celebi, M. Emre
    Wen, Quan
    Hwang, Sae
    Iyatomi, Hitoshi
    Schaefer, Gerald
    SKIN RESEARCH AND TECHNOLOGY, 2013, 19 (01) : E252 - E258
  • [6] Classification of Dermoscopy Skin Lesion Color-Images Using Fractal-Deep Learning Features
    Omar Molina-Molina, Edgar
    Solorza-Calderon, Selene
    Alvarez-Borrego, Josue
    APPLIED SCIENCES-BASEL, 2020, 10 (17):
  • [7] A General Algorithm for Automatic Lesion Segmentation in Dermoscopy Images
    Tajeddin, Neda Zamani
    Asl, Babak Mohammadzadeh
    2016 23RD IRANIAN CONFERENCE ON BIOMEDICAL ENGINEERING AND 2016 1ST INTERNATIONAL IRANIAN CONFERENCE ON BIOMEDICAL ENGINEERING (ICBME), 2016, : 129 - 134
  • [8] Border detection in dermoscopy images using hybrid thresholding on optimized color channels
    Garnavi, Rahil
    Aldeen, Mohammad
    Celebi, M. Emre
    Varigos, George
    Finch, Sue
    COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2011, 35 (02) : 105 - 115
  • [9] An Automatic Segmentation of Skin Lesion from Dermoscopy Images using Watershed Segmentation
    Chakkaravarthy, A. Prabhu
    Chandrasekar, A.
    PROCEEDINGS OF THE 2018 IEEE INTERNATIONAL CONFERENCE ON RECENT TRENDS IN ELECTRICAL, CONTROL AND COMMUNICATION (RTECC), 2018, : 15 - 18
  • [10] Comparison of Algorithms for Automatic Border Detection of Melanoma in Dermoscopy Images
    Raghavan, Sowmya Srinivasa
    Kaur, Ravneet
    LeAnder, Robert
    APPLICATIONS OF DIGITAL IMAGE PROCESSING XXXIX, 2016, 9971