Improvement of the Photoelectrochemical Performance of TiO2 Nanorod Array by PEDOT and Oxygen Vacancy Co-Modification

被引:8
|
作者
Yang, Bin [1 ]
Chen, Guoqiang [2 ]
Tian, Huiwen [3 ]
Wen, Lei [1 ]
机构
[1] Univ Sci & Technol Beijing, Natl Ctr Mat Serv Safety, Beijing 100083, Peoples R China
[2] Beijing Gen Res Inst, Min & Met Grp, Beijing 100160, Peoples R China
[3] Chinese Acad Sci, Inst Oceanol, Key Lab Marine Environm Corros & Biofouling, Qingdao 266071, Shandong, Peoples R China
来源
CATALYSTS | 2019年 / 9卷 / 05期
基金
中国国家自然科学基金;
关键词
oxygen vacancy; polymeric composites; photoelectrochemistry; co-modification; solar energy conversion; PHOTOCATALYTIC ACTIVITY; WATER; CONDUCTIVITY; NANOFIBERS; FILMS;
D O I
10.3390/catal9050407
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this study, oxygen vacancy modified TiO2 nanorod array photoelectrode was prepared by reducing hydrogen atmosphere to increase its free charge carrier density. Subsequently, a p-type conductive poly 3,4-ethylenedioxythiophene (PEDOT) layer was deposited on the surface of oxygen vacancy modified TiO2, to inhibit the surface states. Meanwhile, a p-n heterojunction formed between PEDOT and TiO2 to improve the separation of photo-induced carriers further. The photocurrent of TiO2 nanorod array increased to nearly 0.9 mA/cm(2) after the co-modification under standard sunlight illumination, whose value is nearly nine times higher than that of pure TiO2 nanorod array. Thus, this is a promising modification method for TiO2 photoanode photoelectrochemical (PEC) performance improving.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Enhanced photoelectrochemical performance with in-situ Au modified TiO2 nanorod arrays as photoanode
    Xu, Fang
    Bai, Dandan
    Mei, Jingjing
    Wu, Dapeng
    Gao, Zhiyong
    Jiang, Kai
    Liu, Baoxia
    JOURNAL OF ALLOYS AND COMPOUNDS, 2016, 688 : 914 - 920
  • [42] TiO2 nanorod array@carbon cloth photocatalyst for CO2 reduction
    Yang, Yurong
    Qiu, Min
    Liu, Li
    CERAMICS INTERNATIONAL, 2016, 42 (13) : 15081 - 15086
  • [43] Defect Engineering and Surface Polarization of TiO2 Nanorod Arrays toward Efficient Photoelectrochemical Oxygen Evolution
    Li, Yueying
    Liang, Shiyu
    Sun, Huanhuan
    Hua, Wei
    Wang, Jian-Gan
    CATALYSTS, 2022, 12 (09)
  • [44] Design and optimization of photocatalytic performance of 3D TiO2 microspheres through Au nanoparticles and rGO co-modification
    An, Huiqin
    Wang, Huizhen
    Fang, Sheng
    Li, Min
    He, Xiaoling
    Zhao, Lizhi
    Yin, Zhen
    MATERIALS RESEARCH EXPRESS, 2019, 6 (07)
  • [45] TiO2/CdS nanorod array-based photoelectrochemical sensing of Cu2+ in human serum samples
    Feng, Kejun
    Yang, Minghui
    Xie, Fang
    Diao, Guiqiang
    Ou, Mingming
    Huang, Huanfeng
    ANALYTICAL METHODS, 2017, 9 (48) : 6754 - 6759
  • [46] Surface modification of TiO2 for photoelectrochemical DNA biosensors
    Sakib, Sadman
    Pandey, Richa
    Soleymani, Leyla
    Zhitomirsky, Igor
    Medical Devices and Sensors, 2020, 3 (02):
  • [47] The novel behavior of photoelectrochemical property of annealing TiO2 nanorod arrays
    Shangrong Chen
    Changlin Li
    Zhongyu Hou
    Journal of Materials Science, 2020, 55 : 5969 - 5981
  • [48] Heterogeneous three-dimensional TiO2/ZnO nanorod array for enhanced photoelectrochemical water splitting properties
    Fang Xu
    Jingjing Mei
    Xiyong Li
    Yamin Sun
    Dapeng Wu
    Zhiyong Gao
    Qian Zhang
    Kai Jiang
    Journal of Nanoparticle Research, 2017, 19
  • [49] Preparation and photoelectrochemical properties of TiO2/ZnO nanorod heterojunction arrays
    He, Ziyue
    Zhang, Wenkai
    Xie, Xin
    Guo, Jiahe
    Zhang, Xinyu
    Wang, Jingyang
    JOURNAL OF NANOPARTICLE RESEARCH, 2023, 25 (11)
  • [50] Fabrication of porous TiO2 nanorod array photoelectrodes with enhanced photoelectrochemical water splitting by helium ion implantation
    Liu, Yichao
    Shen, Shaohua
    Ren, Feng
    Chen, Jianan
    Fu, Yanming
    Zheng, Xudong
    Cai, Guangxu
    Xing, Zhuo
    Wu, Hengyi
    Jiang, Changzhong
    NANOSCALE, 2016, 8 (20) : 10642 - 10648