ON BASES OF SOME SIMPLE MODULES OF SYMMETRIC GROUPS AND HECKE ALGEBRAS

被引:3
|
作者
De Boeck, M. [1 ]
Evseev, A. [1 ]
Lyle, S. [2 ]
Speyer, L. [3 ]
机构
[1] Univ Birmingham, Sch Math, Birmingham B15 2TT, W Midlands, England
[2] Univ East Anglia, Sch Math, Norwich Res Pk, Norwich NR4 7TJ, Norfolk, England
[3] Univ Virginia, Dept Math, Charlottesville, VA 22904 USA
基金
日本学术振兴会; 英国工程与自然科学研究理事会;
关键词
GRADED DECOMPOSITION NUMBERS;
D O I
10.1007/s00031-017-9444-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider simple modules for a Hecke algebra with a parameter of quantum characteristic e. Equivalently, we consider simple modules D (lambda), labelled by e-restricted partitions lambda of n, for a cyclotomic KLR algebra over a field of characteristic p ae<yen> 0, with mild restrictions on p. If all parts of lambda are at most 2, we identify a set DStd(e), (p) (lambda) of standard lambda-tableaux, which is defined combinatorially and naturally labels a basis of D (lambda). In particular, we prove that the q-character of D (lambda) can be described in terms of DStd(e), (p) (lambda). We show that a certain natural approach to constructing a basis of an arbitrary D (lambda) does not work in general, giving a counterexample to a conjecture of Mathas.
引用
收藏
页码:631 / 669
页数:39
相关论文
共 50 条