Predicting cardiovascular risk factors from facial & full body photography using deep learning

被引:0
|
作者
Knorr, M. S. [1 ]
Neyazi, M. [1 ]
Bremer, J. P. [1 ]
Brederecke, J. [1 ]
Ojeda, F. M. [1 ]
Ohm, F. [2 ]
Augustin, M. [2 ]
Blankenberg, S. [1 ]
Kirsten, N. [2 ]
Schnabel, R. B. [1 ]
机构
[1] Univ Med Ctr Hamburg Eppendorf, Univ Heart & Vasc Ctr Hamburg, Dept Cardiol, Hamburg, Germany
[2] Univ Med Ctr Hamburg Eppendorf, Inst Hlth Serv Res Dermatol & Nursing IVDP, Hamburg, Germany
关键词
D O I
暂无
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
引用
收藏
页码:2780 / 2780
页数:1
相关论文
共 50 条
  • [1] Predicting cardiovascular disease from fundus images using deep learning
    Mellor, J.
    Storkey, A.
    Colhoun, H. M.
    McKeigue, P.
    [J]. DIABETOLOGIA, 2019, 62 : S37 - S37
  • [2] Predicting cardiovascular risk from national administrative databases using a combined survival analysis and deep learning approach
    Barbieri, Sebastiano
    Mehta, Suneela
    Wu, Billy
    Bharat, Chrianna
    Poppe, Katrina
    Jorm, Louisa
    Jackson, Rod
    [J]. INTERNATIONAL JOURNAL OF EPIDEMIOLOGY, 2022, 51 (03) : 933 - 944
  • [3] Predicting cardiovascular risk traits from pet myocardial perfusion imaging with deep learning
    Juarez-Orozco, L.
    Yeung, M. W.
    Knol, R. J. J.
    Benjamins, J. W.
    Ruijsink, B.
    Martinez-Manzanera, O.
    Knuuti, J.
    Asselbergs, F.
    Van der Zant, F. M.
    Van der Harst, P.
    [J]. EUROPEAN HEART JOURNAL, 2020, 41 : 292 - 292
  • [4] Proposal for Predicting the Facial Brightening Effect of Cosmeceuticals Using Deep Learning
    Matsuo, Rui
    Yotsumoto, Kensuke
    Kawanobe, Hiroko
    Nakashima, Megumi
    Hasegawa, Makoto
    [J]. INTERNATIONAL WORKSHOP ON ADVANCED IMAGING TECHNOLOGY, IWAIT 2023, 2023, 12592
  • [5] Incorporating longitudinal history of risk factors into atherosclerotic cardiovascular disease risk prediction using deep learning
    Yu, Jingzhi
    Yang, Xiaoyun
    Deng, Yu
    Krefman, Amy E.
    Pool, Lindsay R.
    Zhao, Lihui
    Mi, Xinlei
    Ning, Hongyan
    Wilkins, John
    Lloyd-Jones, Donald M.
    Petito, Lucia C.
    Allen, Norrina B.
    [J]. SCIENTIFIC REPORTS, 2024, 14 (01)
  • [6] Incorporating longitudinal history of risk factors into atherosclerotic cardiovascular disease risk prediction using deep learning
    Jingzhi Yu
    Xiaoyun Yang
    Yu Deng
    Amy E. Krefman
    Lindsay R. Pool
    Lihui Zhao
    Xinlei Mi
    Hongyan Ning
    John Wilkins
    Donald M. Lloyd-Jones
    Lucia C. Petito
    Norrina B. Allen
    [J]. Scientific Reports, 14
  • [7] Prediction of cardiovascular risk factors from retinal fundus photographs via deep learning
    Ryan Poplin
    Avinash V. Varadarajan
    Katy Blumer
    Yun Liu
    Michael V. McConnell
    Greg S. Corrado
    Lily Peng
    Dale R. Webster
    [J]. Nature Biomedical Engineering, 2018, 2 : 158 - 164
  • [8] Prediction of cardiovascular risk factors from retinal fundus photographs via deep learning
    Poplin, Ryan
    Varadarajan, Avinash V.
    Blumer, Katy
    Liu, Yun
    McConnell, Michael V.
    Corrado, Greg S.
    Peng, Lily
    Webster, Dale R.
    [J]. NATURE BIOMEDICAL ENGINEERING, 2018, 2 (03): : 158 - 164
  • [9] Predicting Australian Adults at High Risk of Cardiovascular Disease Mortality Using Standard Risk Factors and Machine Learning
    Sajeev, Shelda
    Champion, Stephanie
    Beleigoli, Alline
    Chew, Derek
    Reed, Richard L.
    Magliano, Dianna J.
    Shaw, Jonathan E.
    Milne, Roger L.
    Appleton, Sarah
    Gill, Tiffany K.
    Maeder, Anthony
    [J]. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH, 2021, 18 (06) : 1 - 14
  • [10] Predicting cardiovascular risk using measures of regional and total body fat
    Ricciardi, Richard
    Metter, E. Jeffery
    Cavanaugh, Erica W.
    Ghambaryan, Anna
    Talbot, Laura A.
    [J]. APPLIED NURSING RESEARCH, 2009, 22 (01) : 2 - 9