Prediction of cardiovascular risk factors from retinal fundus photographs via deep learning

被引:939
|
作者
Poplin, Ryan [1 ]
Varadarajan, Avinash V. [1 ]
Blumer, Katy [1 ]
Liu, Yun [1 ]
McConnell, Michael V. [2 ,3 ]
Corrado, Greg S. [1 ]
Peng, Lily [1 ]
Webster, Dale R. [1 ]
机构
[1] Google, Google Res, Mountain View, CA 94043 USA
[2] Verily Life Sci, San Francisco, CA USA
[3] Stanford Sch Med, Div Cardiovasc Med, Stanford, CA USA
来源
NATURE BIOMEDICAL ENGINEERING | 2018年 / 2卷 / 03期
基金
英国医学研究理事会;
关键词
CORONARY-HEART-DISEASE; DIABETIC-RETINOPATHY; ATHEROSCLEROSIS RISK; FRACTAL DIMENSION; VASCULAR CALIBER; VESSEL CALIBER; MORTALITY; STROKE; ABNORMALITIES; VALIDATION;
D O I
10.1038/s41551-018-0195-0
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Traditionally, medical discoveries are made by observing associations, making hypotheses from them and then designing and running experiments to test the hypotheses. However, with medical images, observing and quantifying associations can often be difficult because of the wide variety of features, patterns, colours, values and shapes that are present in real data. Here, we show that deep learning can extract new knowledge from retinal fundus images. Using deep-learning models trained on data from 284,335 patients and validated on two independent datasets of 12,026 and 999 patients, we predicted cardiovascular risk factors not previously thought to be present or quantifiable in retinal images, such as age (mean absolute error within 3.26 years), gender (area under the receiver operating characteristic curve (AUC) = 0.97), smoking status (AUC = 0.71), systolic blood pressure (mean absolute error within 11.23 mmHg) and major adverse cardiac events (AUC = 0.70). We also show that the trained deep-learning models used anatomical features, such as the optic disc or blood vessels, to generate each prediction.
引用
收藏
页码:158 / 164
页数:7
相关论文
共 50 条
  • [1] Prediction of cardiovascular risk factors from retinal fundus photographs via deep learning
    Ryan Poplin
    Avinash V. Varadarajan
    Katy Blumer
    Yun Liu
    Michael V. McConnell
    Greg S. Corrado
    Lily Peng
    Dale R. Webster
    [J]. Nature Biomedical Engineering, 2018, 2 : 158 - 164
  • [2] Prediction of cardiovascular risk factors from retinal fundus photographs: Validation of a deep learning algorithm in a prospective non-interventional study in Kenya
    White, Tom
    Selvarajah, Viknesh
    Wolfhagen-Sand, Fredrik
    Svangard, Nils
    Mohankumar, Gayathri
    Fenici, Peter
    Rough, Kathryn
    Onyango, Nelson
    Lyons, Kendall
    Mack, Christina
    Nduba, Videlis
    Saleh, Mansoor Noorali
    Abayo, Innocent
    Siddiqui, Afrah
    Majdanska-Strzalka, Malgorzata
    Kaszubska, Katarzyna
    Hegelund-Myrback, Tove
    Esterline, Russell
    Manzur, Antonio
    Parker, Victoria E. R.
    [J]. DIABETES OBESITY & METABOLISM, 2024, 26 (07): : 2722 - 2731
  • [3] Multimodal deep learning of fundus abnormalities and traditional risk factors for cardiovascular risk prediction
    Yeong Chan Lee
    Jiho Cha
    Injeong Shim
    Woong-Yang Park
    Se Woong Kang
    Dong Hui Lim
    Hong-Hee Won
    [J]. npj Digital Medicine, 6
  • [4] Multimodal deep learning of fundus abnormalities and traditional risk factors for cardiovascular risk prediction
    Lee, Yeong Chan
    Cha, Jiho
    Shim, Injeong
    Park, Woong-Yang
    Kang, Se Woong
    Lim, Dong Hui
    Won, Hong-Hee
    [J]. NPJ DIGITAL MEDICINE, 2023, 6 (01)
  • [5] Predicting sex from retinal fundus photographs using automated deep learning
    Korot, Edward
    Pontikos, Nikolas
    Liu, Xiaoxuan
    Wagner, Siegfried K.
    Faes, Livia
    Huemer, Josef
    Balaskas, Konstantinos
    Denniston, Alastair K.
    Khawaja, Anthony
    Keane, Pearse A.
    [J]. SCIENTIFIC REPORTS, 2021, 11 (01)
  • [6] Predicting sex from retinal fundus photographs using automated deep learning
    Edward Korot
    Nikolas Pontikos
    Xiaoxuan Liu
    Siegfried K. Wagner
    Livia Faes
    Josef Huemer
    Konstantinos Balaskas
    Alastair K. Denniston
    Anthony Khawaja
    Pearse A. Keane
    [J]. Scientific Reports, 11
  • [7] Detecting Glaucoma From Retinal Fundus Photographs Based on Deep Learning Models
    Islam, Md Rafiqul
    Sakib, Md Kowsar Hossain
    Kazemi, Ehsan
    Yousefi, Siamak
    [J]. INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2022, 63 (07)
  • [8] Efficient labeling of retinal fundus photographs using deep active learning
    Paul, Samantha K.
    Pan, Ian
    Sobol, Warren M.
    [J]. JOURNAL OF MEDICAL IMAGING, 2022, 9 (06)
  • [9] Prediction of White Matter Hyperintensity in Brain MRI Using Fundus Photographs via Deep Learning
    Cho, Bum-Joo
    Lee, Minwoo
    Han, Jiyong
    Kwon, Soonil
    Oh, Mi Sun
    Yu, Kyung-Ho
    Lee, Byung-Chul
    Kim, Ju Han
    Kim, Chulho
    [J]. JOURNAL OF CLINICAL MEDICINE, 2022, 11 (12)
  • [10] Prediction of hypertension, hyperglycemia and dyslipidemia from retinal fundus photographs via deep learning: A cross-sectional study of chronic diseases in central China
    Zhang, Li
    Yuan, Mengya
    An, Zhen
    Zhao, Xiangmei
    Wu, Hui
    Li, Haibin
    Wang, Ya
    Sun, Beibei
    Li, Huijun
    Ding, Shibin
    Zeng, Xiang
    Chao, Ling
    Li, Pan
    Wu, Weidong
    [J]. PLOS ONE, 2020, 15 (05):