Spectra and scattering of light lattice nuclei from effective field theory

被引:40
|
作者
Kirscher, J. [1 ]
Barnea, N. [1 ]
Gazit, D. [1 ]
Pederiva, F. [2 ,3 ]
van Kolck, U. [4 ,5 ]
机构
[1] Hebrew Univ Jerusalem, Racah Inst Phys, IL-91904 Jerusalem, Israel
[2] Univ Trento, Dept Phys, I-38123 Trento, Italy
[3] INFN TIFPA Trento Inst Fundamental Phys & Applica, Trento, Italy
[4] Univ Paris 11, Inst Phys Nucl, CNRS, IN2P3, F-91406 Orsay, France
[5] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA
来源
PHYSICAL REVIEW C | 2015年 / 92卷 / 05期
关键词
NEUTRON-DEUTERON SCATTERING; CHIRAL PERTURBATION-THEORY; SHORT-RANGE INTERACTIONS; ALPHA-PARTICLE; BINDING-ENERGIES; WAVE-FUNCTIONS; 3-BODY SYSTEM; S-WAVE; STATE; TRITON;
D O I
10.1103/PhysRevC.92.054002
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
An effective field theory is used to describe light nuclei, calculated from quantum chromodynamics on a lattice at unphysically large pion masses. The theory is calibrated at leading order to two available data sets on two- and three-body nuclei for two pion masses. At those pion masses we predict the quartet and doublet neutron-deuteron scattering lengths, and the alpha-particle binding energy. For m(pi) = 510 MeV we obtain, respectively, (4)a(nD) = 2.3 +/- 1.3 fm, (2)a(nD) = 2.2 +/- 2.1 fm, and B-alpha = 35 +/- 22 MeV, while for m(pi) = 805 MeV (4)a(nD) = 1.6 +/- 1.3 fm, (2)a(nD) = 0.62 +/- 1.0 fm, and B-alpha = 94 +/- 45 MeV are found. Phillips- and Tjon-like correlations to the triton binding energy are established. We find the theoretical uncertainty in the respective correlation bands to be independent of the pion mass. As a benchmark, we present results for the physical pion mass, using experimental two-body scattering lengths and the triton binding energy as input. Hints of subtle changes in the structure of the triton and alpha particle are discussed.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] Lattice calculations for A=3, 4, 6, 12 nuclei using chiral effective field theory
    Epelbaum, E.
    Krebs, H.
    Lee, D.
    Meissner, U. -G.
    EUROPEAN PHYSICAL JOURNAL A, 2010, 45 (03): : 335 - 352
  • [42] Effective field theory for deformed atomic nuclei
    Papenbrock, T.
    Weidenmueller, H. A.
    PHYSICA SCRIPTA, 2016, 91 (05)
  • [43] Effective field theory for triaxially deformed nuclei
    Chen, Q. B.
    Kaiser, N.
    Meissner, Ulf-G.
    Meng, J.
    EUROPEAN PHYSICAL JOURNAL A, 2017, 53 (10):
  • [44] Effective field theory description of halo nuclei
    Hammer, H-W
    Ji, C.
    Phillips, D. R.
    JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS, 2017, 44 (10)
  • [45] Improved description of light nuclei through chiral effective field theory at leading order
    Sanchez, M. Sanchez
    Smirnova, N. A.
    Shirokov, A. M.
    Maris, P.
    Vary, J. P.
    PHYSICAL REVIEW C, 2020, 102 (02)
  • [46] Effective field theory and electroweak processes in nuclei
    Kubodera, K.
    PROGRESS IN PARTICLE AND NUCLEAR PHYSICS, 2010, 64 (02) : 417 - 419
  • [47] Effective field theory for triaxially deformed nuclei
    Q. B. Chen
    N. Kaiser
    Ulf-G. Meißner
    J. Meng
    The European Physical Journal A, 2017, 53
  • [48] Description of light nuclei in pionless effective field theory using the stochastic variational method
    Lensky, Vadim
    Birse, Michael C.
    Walet, Niels R.
    PHYSICAL REVIEW C, 2016, 94 (03)
  • [49] Effective field theory for proton halo nuclei
    Ryberg, Emil
    Forssen, Christian
    Hammer, H. -W.
    Platter, Lucas
    PHYSICAL REVIEW C, 2014, 89 (01):
  • [50] αα scattering in halo effective field theory
    Higa, R.
    Hammer, H. -W.
    van Kolck, U.
    NUCLEAR PHYSICS A, 2008, 809 (3-4) : 171 - 188