On the Rates of Asymptotic Normality for Bernstein Polynomial Estimators in a Triangular Array

被引:4
|
作者
Lu, Dawei [1 ,2 ]
Wang, Lina [1 ]
机构
[1] Dalian Univ Technol, Sch Math Sci, Dalian 116023, Peoples R China
[2] Dalian Univ Technol, Key Lab Computat Math & Data Intelligence Liaonin, Dalian 116024, Peoples R China
基金
中国国家自然科学基金;
关键词
Bernstein polynomials; Distribution function estimator; Asymptotic normality; Berry-Esseen Theorem; Triangular array; SMOOTH ESTIMATION; DENSITY-FUNCTION;
D O I
10.1007/s11009-020-09829-3
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
It is well known that the empirical distribution function has superior properties as an estimator of the underlying distribution functionF. However, considering its jump discontinuities, the estimator is limited whenFis continuous. Mixtures of the binomial probabilities relying on Bernstein polynomials lead to good approximation properties for the resulting estimator ofF. In this paper, we establish the rates of (pointwise) asymptotic normality for Bernstein estimators by the Berry-Esseen Theorem in the case that the observations are in a triangular array. Particularly, the (asymptotic) absence of the boundary bias and the asymptotic behaviors of the variance are investigated. Besides, numerical simulations are presented to verify the validity of our main results.
引用
收藏
页码:1519 / 1536
页数:18
相关论文
共 50 条
  • [31] Joint asymptotic normality of tail-index estimators
    Csörgö, S
    Viharos, L
    [J]. LIMIT THEOREMS IN PROBABILITY AND STATISTICS, VOL I, 2002, : 457 - 478
  • [32] Asymptotic normality of DHD estimators in a partially linear model
    Hongchang Hu
    Yu Zhang
    Xiong Pan
    [J]. Statistical Papers, 2016, 57 : 567 - 587
  • [33] Asymptotic normality of DHD estimators in a partially linear model
    Hu, Hongchang
    Zhang, Yu
    Pan, Xiong
    [J]. STATISTICAL PAPERS, 2016, 57 (03) : 567 - 587
  • [34] Asymptotic Normality of Kernel Density Estimators under Dependence
    Zudi Lu
    [J]. Annals of the Institute of Statistical Mathematics, 2001, 53 : 447 - 468
  • [35] Consistency, integrability and asymptotic normality for some intermittent estimators
    Morvai, Gusztav
    Weiss, Benjamin
    [J]. ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2021, 18 (02): : 1643 - 1667
  • [36] Optimal uniform convergence rates and asymptotic normality for series estimators under weak dependence and weak conditions
    Chen, Xiaohong
    Christensen, Timothy M.
    [J]. JOURNAL OF ECONOMETRICS, 2015, 188 (02) : 447 - 465
  • [37] ASYMPTOTIC NORMALITY OF RANDOMIZED SEPARABLE STATISTICS IN A POLYNOMIAL SCHEME
    IVANOV, VA
    LAPIN, SA
    [J]. MATHEMATICAL NOTES, 1983, 34 (5-6) : 864 - 870
  • [38] Asymptotic normality of wavelet estimators of the memory parameter for linear processes
    Roueff, F.
    Taqqu, M. S.
    [J]. JOURNAL OF TIME SERIES ANALYSIS, 2009, 30 (05) : 534 - 558
  • [39] Asymptotic Normality of the Recursive M-estimators of the Scale Parameters
    Baiqi Miao
    Yuehua Wu
    Donghai Liu
    Qian Tong
    [J]. Annals of the Institute of Statistical Mathematics, 2007, 59 : 367 - 384
  • [40] Asymptotic normality of kernel estimators based upon incomplete data
    Boukeloua, M.
    Messaci, F.
    [J]. JOURNAL OF NONPARAMETRIC STATISTICS, 2016, 28 (03) : 469 - 486