Fokker-Planck quantum master equation for mixed quantum-semiclassical dynamics

被引:13
|
作者
Ding, Jin-Jin [1 ,2 ,3 ,4 ,5 ]
Wang, Yao [2 ,3 ,4 ,5 ]
Zhang, Hou-Dao [2 ,3 ,4 ,5 ]
Xu, Rui-Xue [2 ,3 ,4 ,5 ]
Zheng, Xiao [2 ,3 ,4 ,5 ]
Yan, YiJing [2 ,3 ,4 ,5 ]
机构
[1] Nantong Univ, Sch Chem & Chem Engn, Nantong 226019, Jiangsu, Peoples R China
[2] Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, Hefei 230026, Anhui, Peoples R China
[3] Univ Sci & Technol China, Dept Chem Phys, Hefei 230026, Anhui, Peoples R China
[4] Univ Sci & Technol China, iChEM, Hefei 230026, Anhui, Peoples R China
[5] Univ Sci & Technol China, Synerget Innovat Ctr Quantum Informat & Quantum P, Hefei 230026, Anhui, Peoples R China
来源
JOURNAL OF CHEMICAL PHYSICS | 2017年 / 146卷 / 02期
关键词
DISSIPATIVE SYSTEMS; ELECTRON-TRANSFER; REDFIELD THEORY; POLAR-SOLVENTS; MOTION; BATH;
D O I
10.1063/1.4973610
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We revisit Caldeira-Leggett's quantum master equation representing mixed quantum-classical theory, but with limited applications. Proposed is a Fokker-Planck quantum master equation theory, with a generic bi-exponential correlation function description on semiclassical Brownian oscillators' environments. The new theory has caustic terms that bridge between the quantum description on primary systems and the semiclassical or quasi-classical description on environments. Various parametrization schemes, both analytical and numerical, for the generic bi-exponential environment bath correlation functions are proposed and scrutinized. The Fokker-Planck quantum master equation theory is of the same numerical cost as the original Caldeira-Leggett's approach but acquires a significantly broadened validity and accuracy range, as illustrated against the exact dynamics on model systems in quantum Brownian oscillators' environments, at moderately low temperatures. Published by AIP Publishing.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] On the Long-Time Behavior of the Quantum Fokker-Planck Equation
    C. Sparber
    J. A. Carrillo
    J. Dolbeault
    P. A. Markowich
    [J]. Monatshefte für Mathematik, 2004, 141 : 237 - 257
  • [22] Generalized Fokker-Planck equation for multichannel disordered quantum conductors
    Muttalib, KA
    Klauder, JR
    [J]. PHYSICAL REVIEW LETTERS, 1999, 82 (21) : 4272 - 4275
  • [23] On the long-time behavior of the quantum Fokker-Planck equation
    Sparber, C
    Carrillo, JA
    Dolbeault, J
    Markowich, PA
    [J]. MONATSHEFTE FUR MATHEMATIK, 2004, 141 (03): : 237 - 257
  • [24] Fokker-Planck equation of the reduced Wigner function associated to an Ohmic quantum Langevin dynamics
    Colmenares, Pedro J.
    [J]. PHYSICAL REVIEW E, 2018, 97 (05)
  • [25] Supersymmetric quantum mechanics method for the Fokker-Planck equation with applications to protein folding dynamics
    Polotto, Franciele
    Drigo Filho, Elso
    Chahine, Jorge
    de Oliveira, Ronaldo Junio
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2018, 493 : 286 - 300
  • [26] A COMPARISON OF MASTER EQUATION AND FOKKER-PLANCK EQUATION IN THE THERMODYNAMIC LIMIT
    HU, G
    [J]. ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1986, 64 (02): : 247 - 252
  • [27] NONLINEAR FOKKER-PLANCK EQUATION AS AN ASYMPTOTIC REPRESENTATION OF MASTER EQUATION
    HORSTHEMKE, W
    BRENIG, L
    [J]. ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1977, 27 (04): : 341 - 348
  • [28] On Quantum Fokker–Planck Equation
    Ryosuke Yano
    [J]. Journal of Statistical Physics, 2015, 158 : 231 - 247
  • [29] Fokker-Planck approximation of the master equation in molecular biology
    Sjoberg, Paul
    Lotstedt, Per
    Elf, Johan
    [J]. COMPUTING AND VISUALIZATION IN SCIENCE, 2009, 12 (01) : 37 - 50
  • [30] A TEST FOR 2 FOKKER-PLANCK MODELINGS OF A MASTER EQUATION
    MUNOZ, MA
    GARRIDO, PL
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1995, 28 (09): : 2637 - 2646