Fokker-Planck quantum master equation for mixed quantum-semiclassical dynamics

被引:13
|
作者
Ding, Jin-Jin [1 ,2 ,3 ,4 ,5 ]
Wang, Yao [2 ,3 ,4 ,5 ]
Zhang, Hou-Dao [2 ,3 ,4 ,5 ]
Xu, Rui-Xue [2 ,3 ,4 ,5 ]
Zheng, Xiao [2 ,3 ,4 ,5 ]
Yan, YiJing [2 ,3 ,4 ,5 ]
机构
[1] Nantong Univ, Sch Chem & Chem Engn, Nantong 226019, Jiangsu, Peoples R China
[2] Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, Hefei 230026, Anhui, Peoples R China
[3] Univ Sci & Technol China, Dept Chem Phys, Hefei 230026, Anhui, Peoples R China
[4] Univ Sci & Technol China, iChEM, Hefei 230026, Anhui, Peoples R China
[5] Univ Sci & Technol China, Synerget Innovat Ctr Quantum Informat & Quantum P, Hefei 230026, Anhui, Peoples R China
来源
JOURNAL OF CHEMICAL PHYSICS | 2017年 / 146卷 / 02期
关键词
DISSIPATIVE SYSTEMS; ELECTRON-TRANSFER; REDFIELD THEORY; POLAR-SOLVENTS; MOTION; BATH;
D O I
10.1063/1.4973610
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We revisit Caldeira-Leggett's quantum master equation representing mixed quantum-classical theory, but with limited applications. Proposed is a Fokker-Planck quantum master equation theory, with a generic bi-exponential correlation function description on semiclassical Brownian oscillators' environments. The new theory has caustic terms that bridge between the quantum description on primary systems and the semiclassical or quasi-classical description on environments. Various parametrization schemes, both analytical and numerical, for the generic bi-exponential environment bath correlation functions are proposed and scrutinized. The Fokker-Planck quantum master equation theory is of the same numerical cost as the original Caldeira-Leggett's approach but acquires a significantly broadened validity and accuracy range, as illustrated against the exact dynamics on model systems in quantum Brownian oscillators' environments, at moderately low temperatures. Published by AIP Publishing.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] QUANTUM FLUCTUATIONS MASTER EQUATION AND FOKKER-PLANCK EQUATION
    RISKEN, H
    SCHMID, C
    WEIDLICH, W
    [J]. ZEITSCHRIFT FUR PHYSIK, 1966, 193 (01): : 37 - &
  • [2] QUANTUM FOKKER-PLANCK EQUATION
    CHANG, LD
    WAXMAN, D
    [J]. JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1985, 18 (31): : 5873 - 5879
  • [3] On Quantum Fokker-Planck Equation
    Yano, Ryosuke
    [J]. JOURNAL OF STATISTICAL PHYSICS, 2015, 158 (01) : 231 - 247
  • [4] Quantum Fokker-Planck Dynamics
    Labuschagne, Louis
    Majewski, W. Adam
    [J]. ANNALES HENRI POINCARE, 2022, 23 (05): : 1659 - 1691
  • [5] Quantum Fokker-Planck Master Equation for Continuous Feedback Control
    Annby-Andersson, Bjorn
    Bakhshinezhad, Faraj
    Bhattacharyya, Debankur
    De Sousa, Guilherme
    Jarzynski, Christopher
    Samuelsson, Peter
    Potts, Patrick P.
    [J]. PHYSICAL REVIEW LETTERS, 2022, 129 (05)
  • [6] Dissipaton Equation of Motion Theory versus Fokker-Planck Quantum Master Equation
    Liu, Yang
    Xu, Rui-xue
    Zhang, Hou-dao
    Yan, YiJing
    [J]. CHINESE JOURNAL OF CHEMICAL PHYSICS, 2018, 31 (03) : 245 - 256
  • [7] The quantum Fokker-Planck equation of stochastic inflation
    Collins, Hael
    Holman, Richard
    Vardanyan, Tereza
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2017, (11):
  • [8] ON QUANTUM-MECHANICAL FOKKER-PLANCK EQUATION
    DAVIS, HT
    HIROIKE, K
    RICE, SA
    [J]. JOURNAL OF CHEMICAL PHYSICS, 1965, 43 (08): : 2633 - &
  • [9] Quantum Fokker-Planck Structure of the Lindblad Equation
    de Oliveira, Mario J.
    [J]. BRAZILIAN JOURNAL OF PHYSICS, 2023, 53 (05)
  • [10] Quantum Fokker-Planck Structure of the Lindblad Equation
    Mário J. de Oliveira
    [J]. Brazilian Journal of Physics, 2023, 53