A new diffusion-based variational model for image denoising and segmentation

被引:13
|
作者
Li, Fang [1 ]
Shen, Chaomin
Pi, Ling
机构
[1] E China Normal Univ, Dept Math, Shanghai 200062, Peoples R China
[2] South West Univ, Dept Math, Chongqing 400715, Peoples R China
[3] E China Normal Univ, Joint Lab Imaging Sci & Technol, Shanghai 200062, Peoples R China
[4] E China Normal Univ, Dept Comp Sci, Shanghai 200062, Peoples R China
[5] Shanghai Jiao Tong Univ, Dept Appl Math, Shanghai 200030, Peoples R China
关键词
image denoising; segmentation; bounded variation function; Ginzburg-Landau model; heat flow;
D O I
10.1007/s10851-006-8303-2
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper we propose a new variational model for image denoising and segmentation of both gray and color images. This method is inspired by the complex Ginzburg-Landau model and the weighted bounded variation model. Compared with active contour methods, our new algorithm can detect non-closed edges as well as quadruple junctions, and the initialization is completely automatic. The existence of the minimizer for our energy functional is proved. Numerical results show the effectiveness of our proposed model in image denoising and segmentation.
引用
收藏
页码:115 / 125
页数:11
相关论文
共 50 条
  • [1] A New Diffusion-Based Variational Model for Image Denoising and Segmentation
    Fang Li
    Chaomin Shen
    Ling Pi
    [J]. Journal of Mathematical Imaging and Vision, 2006, 26 : 115 - 125
  • [2] Nonlinear Fourth-Order Diffusion-Based Model for Image Denoising
    Barbu, Tudor
    [J]. SOFT COMPUTING APPLICATIONS, SOFA 2016, VOL 1, 2018, 633 : 423 - 429
  • [3] Denoising diffusion-based MRI to CT image translation enables automated spinal segmentation
    Graf, Robert
    Schmitt, Joachim
    Schlaeger, Sarah
    Moeller, Hendrik Kristian
    Sideri-Lampretsa, Vasiliki
    Sekuboyina, Anjany
    Krieg, Sandro Manuel
    Wiestler, Benedikt
    Menze, Bjoern
    Rueckert, Daniel
    Kirschke, Jan Stefan
    [J]. EUROPEAN RADIOLOGY EXPERIMENTAL, 2023, 7 (01)
  • [4] Denoising diffusion-based MRI to CT image translation enables automated spinal segmentation
    Robert Graf
    Joachim Schmitt
    Sarah Schlaeger
    Hendrik Kristian Möller
    Vasiliki Sideri-Lampretsa
    Anjany Sekuboyina
    Sandro Manuel Krieg
    Benedikt Wiestler
    Bjoern Menze
    Daniel Rueckert
    Jan Stefan Kirschke
    [J]. European Radiology Experimental, 7
  • [5] Diffusion-based image denoising combining curvelet and wavelet
    Ashamol, V. G.
    Sreelekha, G.
    Sathidevi, P. S.
    [J]. PROCEEDINGS OF IWSSIP 2008: 15TH INTERNATIONAL CONFERENCE ON SYSTEMS, SIGNALS AND IMAGE PROCESSING, 2008, : 169 - 172
  • [6] Linear Hyperbolic Diffusion-Based Image Denoising Technique
    Barbu, Tudor
    [J]. NEURAL INFORMATION PROCESSING, PT III, 2015, 9491 : 471 - 478
  • [7] A NONLINEAR FOURTH-ORDER DIFFUSION-BASED MODEL FOR IMAGE DENOISING AND RESTORATION
    Barbu, Tudor
    Munteanu, Ionut
    [J]. PROCEEDINGS OF THE ROMANIAN ACADEMY SERIES A-MATHEMATICS PHYSICS TECHNICAL SCIENCES INFORMATION SCIENCE, 2017, 18 (02): : 108 - 115
  • [8] ERSegDiff: a diffusion-based model for edge reshaping in medical image segmentation
    Chen, Baijing
    Wang, Junxia
    Zheng, Yuanjie
    [J]. PHYSICS IN MEDICINE AND BIOLOGY, 2024, 69 (11):
  • [9] New numerical algorithms for the nonlinear diffusion model of image denoising and segmentation
    Liu, Zhaoxia
    Guo, Boling
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2006, 178 (02) : 380 - 389
  • [10] Diffusion-Based Data Augmentation for Nuclei Image Segmentation
    Yu, Xinyi
    Li, Guanbin
    Lou, Wei
    Liu, Siqi
    Wan, Xiang
    Chen, Yan
    Li, Haofeng
    [J]. MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION, MICCAI 2023, PT VIII, 2023, 14227 : 592 - 602