Auxiliary-vector Detection on Measured Radar Data

被引:0
|
作者
Karystinos, George N. [1 ]
Batalama, Stella N. [2 ]
Pados, Dimitris A. [2 ]
Matyjas, John D. [3 ]
机构
[1] Tech Univ Crete, Dept Elect & Comp Eng, Kounoupidiana 73100, Chania, Greece
[2] SUNY Buffalo, Dept Elect Engn, Buffalo, NY 14260 USA
[3] Air Force Res Lab, RIGE, Griffiss AFB, NY 13441 USA
关键词
D O I
暂无
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
Derived from statistical conditional optimization criteria, the auxiliary-vector (AV) detection algorithm starts from the target vector and adding non-orthogonal auxiliary vector components generates an infinite sequence of tests that converges to the ideal matched filter (MF) processor for any positive definite input autocorrelation matrix. When the input autocorrelation matrix is replaced by a conventional sample-average estimate, the algorithm effectively generates a sequence of estimators of the ideal matched filter that offer exceptional bias/covariance balance for any given finite-size observation data record. In this work, the AV algorithm is evaluated on collected airborne phased-array radar data from the MCARM program and is seen to outperform in probability of detection (for any given false alarm rate) all known and tested adaptive detectors (for example AMF, generalized likelihood ratio test, the multistage Wiener filter algorithm, etc.).
引用
收藏
页码:2098 / +
页数:3
相关论文
共 50 条
  • [41] Processing and evaluation of Multichannel Airborne Radar Measurements (MCARM) measured data
    Babu, BNS
    Torres, JA
    Melvin, WL
    [J]. 1996 IEEE INTERNATIONAL SYMPOSIUM ON PHASED ARRAY SYSTEMS AND TECHNOLOGY: REVOLUTIONARY DEVELOPMENTS IN PHASED ARRAYS, 1996, : 395 - 399
  • [42] Assessing Spectral Compatibility Between Radar and Communication Systems on Measured Data
    Carotenuto, V.
    Aubry, A.
    De Maio, A.
    Pasquino, N.
    Farina, A.
    [J]. 2018 5TH IEEE INTERNATIONAL WORKSHOP ON METROLOGY FOR AEROSPACE (METROAEROSPACE), 2018, : 532 - 537
  • [43] Exploiting Auxiliary Data for Offensive Language Detection with Bidirectional Transformers
    Singh, Sumer
    Li, Sheng
    [J]. WOAH 2021: THE 5TH WORKSHOP ON ONLINE ABUSE AND HARMS, 2021, : 1 - 5
  • [44] The VLTI auxiliary telescopes; measured performances
    Koehler, B.
    Kraus, M.
    Moresmau, J. M.
    Wirenstrand, K.
    Duhoux, P.
    Karban, R.
    Andolfato, L.
    Gonte, F.
    [J]. ADVANCES IN STELLAR INTERFEROMETRY PTS 1 AND 2, 2006, 6268
  • [45] Detection of Encrypted data Based on Support Vector Data Description
    Meng, Juan
    Zhou, Yuhuan
    Pan, Zhisong
    [J]. 2013 INTERNATIONAL CONFERENCE ON ADVANCED CLOUD AND BIG DATA (CBD), 2013, : 187 - 191
  • [46] Simulation and detection of tsunami signatures in ocean surface currents measured by HF radar
    Gurgel, Klaus-Werner
    Dzvonkovskaya, Anna
    Pohlmann, Thomas
    Schlick, Thomas
    Gill, Eric
    [J]. OCEAN DYNAMICS, 2011, 61 (10) : 1495 - 1507
  • [47] Simulation and detection of tsunami signatures in ocean surface currents measured by HF radar
    Klaus-Werner Gurgel
    Anna Dzvonkovskaya
    Thomas Pohlmann
    Thomas Schlick
    Eric Gill
    [J]. Ocean Dynamics, 2011, 61 : 1495 - 1507
  • [48] Radar based Fall Detection with Imbalance Data Handling and Data Augmentation
    Sadreazami, Hamidreza
    Khoyani, Abhishek
    Amini, Marzieh
    Rajan, Sreeraman
    Bolic, Miodrag
    [J]. 2023 IEEE SENSORS APPLICATIONS SYMPOSIUM, SAS, 2023,
  • [49] SEMI-PARAMETRIC PREDICTION INTERVALS IN SMALL AREAS WHEN AUXILIARY DATA ARE MEASURED WITH ERROR
    Datta, Gauri
    Delaigle, Aurore
    Hall, Peter
    Wang, Li
    [J]. STATISTICA SINICA, 2018, 28 (04) : 2309 - 2335
  • [50] Detection and Tracking on Automotive Radar Data with Deep Learning
    Tilly, Julius F.
    Haag, Stefan
    Schumann, Ole
    Weishaupt, Fabio
    Duraisamy, Bharanidhar
    Dickmann, Jurgen
    Fritzsche, Martin
    [J]. PROCEEDINGS OF 2020 23RD INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION 2020), 2020, : 1028 - 1034